
Simulink® Release Notes

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Release Notes
© COPYRIGHT 2000–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Simulink® Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 2.

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

Latest Version
V7.3 (R2009a)

Yes
Details

Yes
Summary

Bug Reports
Includes fixes

Printable Release
Notes:
PDF

Current product
documentation

V7.2 (R2008b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V7.1.1 (R2008a+) No No Bug Reports
Includes fixes

No

V7.1 (R2008a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V7.0.1 (R2007b+) No No Bug Reports
Includes fixes

No

V7.0 (R2007b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.6.1 (R2007a+) No No Bug Reports
Includes fixes

No

V6.6 (R2007a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.5 (R2006b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.4.1 (R2006a+) No No Bug Reports No

V6.4 (R2006a) Yes
Details

Yes
Summary

Bug Reports No

1

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2009a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2009a
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006a

Simulink® Release Notes

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

V6.3 (R14SP3) Yes
Details

Yes
Summary

Bug Reports No

V6.2 (R14SP2) Yes
Details

Yes
Summary

Bug Reports No

V6.1 (R14SP1) Yes
Details

Yes
Summary

Fixed Bugs No

V6.0 (R14) Yes
Details

Yes
Summary

Fixed Bugs No

V5.1 (R13SP1) Yes
Details

No Fixed Bugs Printable Release
Notes:
PDF
V5.1 product
documentation

V5.0.1 (R13.0.1) No Yes
Summary

Fixed Bugs No

V5.0 (R13) Yes
Details

Yes
Summary

Fixed Bugs No

V4.1 (R12+) Yes
Details

Yes
Summary

Fixed Bugs No

V4.0 (R12) Yes
Details

Yes
Summary

No No

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

2

http://www.mathworks.com/support/bugreports/?product=SL&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=SL&release;=R14SP2
file:///B:/matlab/doc/src/bugfixes_13SP1.html%23Simulink
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/simulink/simulink.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/simulink/simulink.html
file:///B:/matlab/doc/src/bugfixes_13plus.html%23Simulink
file:///B:/matlab/doc/src/bugfixes_13.html%23Simulink

Summary by Version

Review the release notes for other MathWorks™ products required for this
product (for example, MATLAB® or Simulink®) for enhancements, bugs, and
compatibility considerations that also might impact you.

If you are upgrading from a software version other than the most recent one,
review the release notes for all interim versions, not just for the version you
are installing. For example, when upgrading from V1.0 to V1.2, review the
release notes for V1.1 and V1.2.

What’s in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

Compatibility issues reported after the product is released appear under
Bug Reports at The MathWorks™ Web site. Bug fixes can sometimes result
in incompatibilities, so you should also review the fixed bugs in Bug Reports
for any compatibility impact.

Fixed Bugs and Known Problems

The MathWorks offers a user-searchable Bug Reports database so you can
view Bug Reports. The development team updates this database at release
time and as more information becomes available. This includes provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

3

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/

Simulink® Release Notes

Version 7.3 (R2009a) Simulink Software
This table summarizes what’s new in V7.3 (R2009a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

Printable Release
Notes:
PDF

Current product
documentation

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 4

• “Component-Based Modeling” on page 5

• “Embedded MATLAB Function Blocks” on page 7

• “Data Management” on page 7

• “Simulink File Management” on page 9

• “Block Enhancements” on page 9

• “User Interface Enhancements” on page 19

• “S-Functions” on page 20

• “Removal of Lookup Table Designer from the Lookup Table Editor” on
page 21

Simulation Performance

Saving and Restoring the Complete SimState

Use the new SimState feature to save the complete simulation state. Unlike
the final states stored in earlier versions of Simulink, the SimState contains

4

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2009a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2009a
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/

Version 7.3 (R2009a) Simulink® Software

the complete simulation state of the model (including block states that are
logged). You can then restore the state at a later time and continue simulation
from the exact instant at which you stopped the simulation.

Save Simulink Profiler Results

Save the results of the Simulink Profiler and later regenerate reports for
review or for comparison.

Component-Based Modeling

Port Value Displays in Referenced Models
In R2009a, port value displays can appear for blocks in a Normal mode
referenced model. To control port value displays, choose View > Port Values
in the model window. For complete information about port value displays, see
“Displaying Block Outputs”.

Parallel Builds Enable Faster Diagram Updates for Large Model
Reference Hierarchies In Accelerator Mode
R2009a provides potentially faster diagram updates for models containing
large model reference hierarchies by building referenced models that are
configured in Accelerator mode in parallel whenever possible. For example,
updating of each model block can be distributed across the cores of a multicore
host computer.

To take advantage of this feature, Parallel Computing Toolbox™ software
must be licensed and installed in your development environment. If Parallel
Computing Toolbox software is available, updating a model diagram rebuilds
referenced models configured in Accelerator mode in parallel whenever
possible.

For example, to use parallel building for updating a large model reference
hierarchy on a desktop machine with four cores, you could perform the
following steps:

5

Simulink® Release Notes

1 Issue the MATLAB command ’matlabpool 4’ to set up a pool of four
MATLAB workers, one for each core, in the Parallel Computing Toolbox
environment.

2 Open your model and make sure that the referenced models are configured
in Accelerator mode.

3 Optionally, inspect the model reference hierarchy. For example, you can
use the Model Dependency Viewer from the Tools menu of Model Explorer
to determine, based on model dependencies, which models will be built
in parallel.

4 Update your model. Messages in the MATLAB command window record
when each parallel or serial build starts and finishes.

The performance gain realized by using parallel builds for updating
referenced models depends on several factors, including how many models
can be built in parallel for a given model referencing hierarchy, the size of
the referenced models, and host machine attributes such as amount of RAM
and number of cores.

The following notes apply to using parallel builds for updating model
reference hierarchies:

• Parallel builds of referenced models support only local MATLAB workers.
They do not support remote workers in MATLAB® Distributed Computing
Server™ configurations.

• The host machine should have an appropriate amount of RAM available for
supporting the number of local workers (MATLAB sessions) that you plan to
use. For example, setting matlabpool to 4 results in five MATLAB sessions
on your machine, each using approximately 120 MB of memory at startup.

• The same MATLAB environment must be set up in each MATLAB worker
session as in the MATLAB client session — for example, the same base
workspace variables, MATLAB path settings, and so forth. You can do this
using the PreLoadFcn callback of the top model. Since the top model is
loaded with each MATLAB worker session, its preload function can be used
for any MATLAB worker session setup.

6

Version 7.3 (R2009a) Simulink® Software

Embedded MATLAB Function Blocks

Support for Enumerated Types
Embedded MATLAB™ Function blocks now support Simulink enumerated
types and generate C code for enumerated data. See “Using Enumerated Data
in Embedded MATLAB Function Blocks” in the Simulink documentation.

Use of Basic Linear Algebra Subprograms (BLAS) Libraries for
Speed
Embedded MATLAB Function blocks now use BLAS libraries to speed up
low-level matrix operations during simulation. See “Speeding Up Simulation
with the Basic Linear Algebra Subprograms (BLAS) Library” in the Simulink
documentation.

Data Management

Signal can Resolve to at Most One Signal Object
You can resolve a named signal to a signal object. The object can then
specify or validate properties of the signal. For more information, see
Simulink.Signal, “Using Signal Objects to Initialize Signals and Discrete
States”, “Using Signal Objects to Tune Initial Values”, and “Applying CSCs
to Parameters and Signals”.

In previous releases, you could associate a signal with multiple signal objects,
provided that the multiple objects specified compatible signal attributes. In
R2009a, a signal can be associated with at most one signal object. The signal
can reference the object more than once, but every reference must resolve to
exactly the same object. A different signal object that has exactly the same
properties will not meet the requirement. See “Multiple Signal Objects” for
more information.

7

Simulink® Release Notes

Compatibility Considerations. A compile-time error occurs in R2009a if
a model associates more than one signal object with any signal. To prevent
the error, decide which object the signal will use, and delete or reconfigure all
references to any other signal objects so that all remaining references resolve
to the chosen signal object. See “Displaying Signal Sources and Destinations”
for a description of techniques that you can use to trace the full extent of
a signal.

“Signed” Renamed to “Signedness” in the
Simulink.NumericType class
In previous releases, the Property dialog of a Simulink.NumericType object
whose Data type mode was any Fixed-point mode showed a property
named Signed, which was a checkbox. Selecting the checkbox specified
a signed type; clearing it specified an unsigned type. The API equivalent
of Signed was Signed, a Boolean whose values could be 1 (signed) or 0
(unsigned).

In R2009a, a property named Signedness replaces Signed in the Property
dialog of a Simulink.NumericType object. You can set Signedness to Signed
(the default), Unsigned, or Auto, which specifies that the object inherits its
Signedness. The API equivalent of Signedness is Signedness, which can
be 1 (signed), 0 (unsigned), or Auto.

For compatibility with existing models, the property Signed remains available
in R2009a. Setting Signed in R2009a sets Signedness accordingly. Accessing
Signed in R2009a returns the value of Signedness if that value is 0 or 1, or
generates an error if the value of Signedness is Auto, because that is not a
legal value for Signed.

Do not use the Signed with Simulink.NumericType in new models; use
Signedness instead. See Simulink.NumericType for more information.

“Sign” Renamed to “Signedness” in the Data Type Assistant
For blocks and classes that support fixed-point data types, the property
Sign previously appeared in the Data Type Assistant when the Mode was
Fixed point. In R2009a, this property appears in the Data Type Assistant
as Signedness. Only the GUI label of the property differs; its behavior and
API are unchanged in all contexts.

8

Version 7.3 (R2009a) Simulink® Software

Tab Completion for Enumerated Data Types
Tab completion now works for enumerated data types in the same way that it
does for other MATLAB classes. See “Tab Completion” in “Instantiating an
Enumerated Type in MATLAB” for details.

Simulink File Management

Model Dependencies Tools
Enhanced file dependency analysis has the following new features:

• Files in the Simulink manifest are now recorded relative to a project
root folder making manifests easier to share, compare and read. See
“Generating Manifests” and “Editing Manifests”.

• Command-line dependency analysis can now report toolbox dependencies,
and when discovering file dependencies you can optionally generate a
manifest file. See “Command-Line Dependency Analysis”

Block Enhancements

Prelookup and Interpolation Using Prelookup Blocks Support
Parameter Data Types Different from Signal Data Types
The Prelookup block supports breakpoint data types that differ from input
data types. This enhancement provides these benefits:

• Enables lower memory requirement for storing breakpoint data that uses a
smaller type than the input signal

• Enables sharing of prescaled breakpoint data between two Prelookup
blocks with different input data types

• Enables sharing of custom storage breakpoint data in Real-Time
Workshop® generated code for blocks with different input data types

The Interpolation Using Prelookup block supports table data types that differ
from output data types. This enhancement provides these benefits:

• Enables lower memory requirement for storing table data that uses a
smaller type than the output signal

9

Simulink® Release Notes

• Enables sharing of prescaled table data between two Interpolation Using
Prelookup blocks with different output data types

• Enables sharing of custom storage table data in Real-Time Workshop
generated code for blocks with different output data types

The Interpolation Using Prelookup block also supports separate data type
specification for intermediate results. This enhancement enables use of a
greater precision for internal computations than for table data or output data.

Lookup Table (n-D) and Interpolation Using Prelookup Blocks
Perform Efficient Fixed-Point Interpolations
Whenever possible, Lookup Table (n-D) and Interpolation Using Prelookup
blocks use a faster overflow-free subtraction algorithm for fixed-point
interpolation. To achieve this efficiency, the blocks use a data type of larger
container size to perform the overflow-free subtraction, instead of using
control-flow branches as in previous releases. Also, Real-Time Workshop
generated code for fixed-point interpolation is now smaller.

Compatibility Considerations. Due to the change in the overflow-free
subtraction algorithm, fixed-point interpolation in Lookup Table (n-D) and
Interpolation Using Prelookup blocks might, in a few cases, introduce
different rounding results from previous releases. Both simulation and code
generation use the new overflow-free algorithm, so they have the same
rounding behavior and provide bit-true consistency.

Expanded Support for Simplest Rounding Mode to Maximize
Block Efficiency
In R2009a, support for the Simplest rounding mode has been expanded to
enable more blocks to handle mixed floating-point and fixed-point data types:

• Abs

• Data Type Conversion Inherited

• Difference

• Discrete Derivative

• Discrete FIR Filter

10

Version 7.3 (R2009a) Simulink® Software

• Discrete-Time Integrator

• Dot Product

• Fixed-Point State-Space

• Gain

• Index Vector

• Lookup Table (n-D)

• Math Function (for the magnitude^2, reciprocal, square, and sqrt
functions)

• MinMax

• Multiport Switch

• Saturation

• Saturation Dynamic

• Sum

• Switch

• Transfer Fcn Direct Form II

• Transfer Fcn Direct Form II Time Varying

• Transfer Fcn First Order

• Transfer Fcn Lead or Lag

• Transfer Fcn Real Zero

• Weighted Sample Time

• Weighted Sample Time Math

For more information, see “Rounding Mode: Simplest” in the Simulink® Fixed
Point™ User’s Guide.

New Rounding Modes Added to Multiple Blocks
For the following Simulink blocks, the dialog box now displays Convergent
and Round as possible rounding modes. These modes enable numerical
agreement with embedded hardware and MATLAB results.

11

Simulink® Release Notes

• Abs

• Data Type Conversion

• Data Type Conversion Inherited

• Difference

• Discrete Derivative

• Discrete FIR Filter

• Discrete-Time Integrator

• Divide

• Dot Product

• Fixed-Point State-Space

• Gain

• Index Vector

• Interpolation Using Prelookup

• Lookup Table

• Lookup Table (2-D)

• Lookup Table (n-D)

• Lookup Table Dynamic

• Math Function (for the magnitude^2, reciprocal, square, and sqrt
functions)

• MinMax

• Multiport Switch

• Prelookup

• Product

• Product of Elements

• Saturation

• Saturation Dynamic

• Sum

12

Version 7.3 (R2009a) Simulink® Software

• Switch

• Transfer Fcn Direct Form II

• Transfer Fcn Direct Form II Time Varying

• Transfer Fcn First Order

• Transfer Fcn Lead or Lag

• Transfer Fcn Real Zero

• Weighted Sample Time

• Weighted Sample Time Math

In the dialog box for these blocks, the field Round integer calculations
toward has been renamed Integer rounding mode. The command-line
parameter remains the same.

For more information, see “Rounding Mode: Convergent” and “Rounding
Mode: Round” in the Simulink Fixed Point User’s Guide.

Compatibility Considerations. If you use an earlier version of Simulink
software to open a model that uses the Convergent or Round rounding mode,
the mode changes automatically to Nearest.

Lookup Table (n-D) Block Performs Faster Calculation of Index
and Fraction for Power of 2 Evenly-Spaced Breakpoint Data
For power of 2 evenly-spaced breakpoint data, the Lookup Table (n-D) block
uses bit shifts to calculate the index and fraction, instead of division. This
enhancement provides these benefits:

• Faster calculation of index and fraction for power of 2 evenly-spaced
breakpoint data

• Smaller size of Real-Time Workshop generated code for the Lookup Table
(n-D) block

Discrete FIR Filter Block Supports More Filter Structures
The following filter structures have been added to the Discrete FIR Filter
block:

13

Simulink® Release Notes

• Direct form symmetric

• Direct form antisymmetric

• Direct form transposed

• Lattice MA

Running a model with these filter structures requires a Signal Processing
Blockset™ license.

Discrete Filter Block Performance, Data Type, Dimension, and
Complexity Enhancements
The following enhancements have been made to the Discrete Filter block:

• Improved numerics and run-time performance of outputs and states by
reducing the number of divide operations in the filter to at most one

• Support for signed fixed-point and integer data types

• Support for vector and matrix inputs

• Support for complex inputs and filter coefficients, where inputs and
coefficients can each be real or complex, independently of the other

• A new Initial states parameter allows you to enter non-zero initial states

• A new Leading denominator coefficient equals 1 parameter provides a
more efficient implementation by eliminating all divides when the leading
denominator coefficient is one

Compatibility Considerations. Due to these enhancements, you might
encounter the compatibility issues in the following sections.

Realization parameter removed. The Real-Time Workshop software
realization parameter has been removed from this block. You can no
longer use the set_param and get_param functions on this block parameter.
The generated code for this block has been improved to be similar to the
former 'sparse' realization, while maintaining tunability as in the former
'general' realization.

14

Version 7.3 (R2009a) Simulink® Software

State changes. Due to the reduction in the number of divide operations
performed by the block, you might notice that your logged states have changed
when the leading denominator coefficient is not one.

MinMax Block Performs More Efficient and Accurate
Comparison Operations
For multiple inputs with mixed floating-point and fixed-point data types, the
MinMax block selects an appropriate data type for performing comparison
operations, instead of using the output data type for all comparisons, as in
previous releases. This enhancement provides these benefits:

• Faster comparison operations, with fewer fixed-point overflows

• Smaller size of Real-Time Workshop generated code for the MinMax block

Logical Operator Block Supports NXOR Boolean Operator
In R2009a, the Logical Operator block has been enhanced with a new NXOR
Boolean operator. When you select this operator, the block returns TRUE
when an even number of inputs are TRUE. Similarly, the block returns
FALSE when an even number of inputs are FALSE.

Use NXOR to replace serial XOR and NOT operations in a model.

Discrete-Time Integrator Block Uses Efficient
Integration-Limiting Algorithm for Forward Euler
Method
When you select the Limit output check box for the Forward Euler method,
the Discrete-Time Integrator block uses only one saturation when a second
saturation is unnecessary. This change in the integration-limiting algorithm
provides these benefits:

• Faster integration

• Smaller size of Real-Time Workshop generated code for the Discrete-Time
Integrator block

15

Simulink® Release Notes

Dot Product Block Converted from S-Function to Core Block
Conversion of the Dot Product block from a masked S-Function to a core
block enables more efficient simulation and better handling of the block in
Simulink models.

Due to this conversion, you can specify sample time and values for the output
minimum and maximum for the Dot Product block.

Compatibility Considerations. In R2009a, signal dimension propagation
might behave differently from previous releases. As a result, your model
might not compile under these conditions:

• Your model contains a Dot Product block in a source loop.

• Your model has underspecified signal dimensions.

If your model does not compile, set dimensions for signals that are not fully
specified.

For example, your model might not compile in this case:

• Your model contains a Transfer Fcn Direct Form II Time Varying block,
which is a masked S-Function with a Dot Product block in a source loop.

• The second and third input ports of the Transfer Fcn Direct Form II Time
Varying block are unconnected, which results in underspecified signal
dimensions.

To ensure that your model compiles in this case, connect Constant blocks to
the second and third input ports of the Transfer Fcn Direct Form II Time
Varying block and specify the signal dimensions for both ports explicitly.

Pulse Generator Block Uses New Default Values for Period
and Pulse Width
For the Pulse Generator block, the default Period value has changed from 2
to 10, and the default Pulse Width value has changed from 50 to 5. These
changes enable easier transitions between time-based and sample-based
mode for the pulse type.

16

Version 7.3 (R2009a) Simulink® Software

Random Number and Unit Delay Blocks Use New Default
Values for Sample Time
The default Sample time values for the Random Number and Unit Delay
blocks have changed:

• The default Sample time value for the Random Number block has changed
from 0 to 0.1.

• The default Sample time value for the Unit Delay block has changed
from 1 to -1.

Trigonometric Function Block Provides Better Support of
Accelerator Mode
The Trigonometric Function block now supports Accelerator mode for all
cases with real inputs and Normal mode support. For more information about
simulation modes, see “Accelerating Models” in the Simulink User’s Guide.

Reshape Block Enhanced with New Input Port
The Reshape block Output dimensionality parameter has a new option,
Derive from reference input port. This option creates a second input
port, Ref, on the block and derives the dimensions of the output signal from
the dimensions of the signal input to the Ref input port. Similarly, the
Reshape block command-line parameter, OutputDimensionality, has the
new option, Derive from reference input port.

Multidimensional Signals in Simulink Blocks
The following blocks were updated to support multidimensional signals. For
more information, see “Signal Dimensions” in the Simulink User’s Guide.

• Assertion

• Extract Bits

• Check Discrete Gradient

• Check Dynamic Gap

• Check Dynamic Lower Bound

• Check Dynamic Range

17

Simulink® Release Notes

• Check Dynamic Upper Bound

• Check Input Resolution

• Check Static Gap

• Check Static Lower Bound

• Check Static Range

• Check Static Upper Bound

• Data Type Scaling Strip

• Wrap to Zero

Subsystem Blocks Enhanced with Read-Only Property That
Indicates Virtual Status
The following subsystem blocks now have the property, IsSubsystemVirtual.
This read-only property returns a Boolean value, on or off, to indicate if a
subsystem is virtual.

• Atomic Subsystem

• Code Reuse Subsystem

• Configurable Subsystem

• Enabled and Triggered Subsystem

• Enabled Subsystem

• For Iterator Subsystem

• Function-Call Subsystem

• If Action Subsystem

• Subsystem

• Switch Case Action Subsystem

• Triggered Subsystem

• While Iterator Subsystem

18

Version 7.3 (R2009a) Simulink® Software

User Interface Enhancements

Port Value Displays in Referenced Models
In R2009a, port value displays can appear for blocks in a Normal mode
referenced model. To control port value displays, choose View > Port Values
in the model window. For complete information about port value displays, see
“Displaying Block Outputs”.

Print Sample Time Legend
Print the Sample Time Legend either as an option of the block diagram print
dialog box or directly from the legend. In either case, the legend will print
on a separate sheet of paper. For more information, see “Print Sample Time
Legend”.

M-API for Access to Compiled Sample Time Information
New MATLAB API provides access to the compiled sample time data, color,
and annotations for a specific block or the entire block diagram directly from
M code.

Model Advisor Report Enhancements
In R2009a, the Model Advisor report is enhanced with:

• The ability to save the report to a location that you specify.

• Improved readability, including the ability to:

- Filter the report to view results according to the result status. For
example, you can now filter the report to show errors and warnings only.

- Collapse and expand the folder view in the report.

- View a summary of results for each folder in the report.

See “Consulting the Model Advisor” in the Simulink User’s Guide.

Counterclockwise Block Rotation
This release lets you rotate blocks counterclockwise as well as clockwise (see
“How to Rotate a Block” for more information).

19

Simulink® Release Notes

Physical Port Rotation for Masked Blocks
This release lets you specify that the ports of a masked blocks not be
repositioned after a clockwise rotation to maintain a left-to-right and
top-to-bottom numbering of the ports. This enhancement facilitates use of
masked blocks in mechanical systems, hydraulic systems, and other modeling
applications where block diagrams do not have a preferred orientation (see
“Port Rotation” for more information.)

Smart Guides
In R2009a, when you drag a block, Simulink draws lines, called smart guides,
that indicate when the block’s ports, center, and edges align with the ports,
centers, and edges of other blocks in the same diagram. This helps you create
well-laid-out diagrams (see “Smart Guides” for more information).

Customizing the Library Browser’s User Interface
Release 2009a lets you customize the Library Browser’s user interface. You
can change the order in which libraries appear in the Library Browser, disable
or hide libraries, sublibraries, and blocks, and add, disable, or hide items
on the Library Browser’s menus. See “Customizing the Library Browser”
for more information.

Subsystem Creation Command
This release adds a command, Simulink.BlockDiagram.createSubSystem,
that creates a subsystem from a specified group of blocks.

S-Functions
Level-1 Fortran S-Functions

In this release, if you attempt to compile or simulate a model with
a Level-1 Fortran S-function, you will receive an error due to the
use of the newly deprecated function ’MXCREATEFULL’ within the
Fortran S-function wrapper ’simulink.F’. If your S-function does not
explicitly use ’MXCREATEFULL’, simply recompile the S-function. If
your S-function uses ’MXCREATEFULL’, replace each instance with
’MXCREATEDOUBLEMATRIX’ and recompile the S-function.

20

Version 7.3 (R2009a) Simulink® Software

Removal of Lookup Table Designer from the Lookup
Table Editor
In R2009a, the Lookup Table Designer is no longer available in the Lookup
Table Editor.

Compatibility Considerations
Previously, you could select Edit > Design Table in the Lookup Table Editor
to launch the Lookup Table Designer. In R2009a, this menu item is no longer
available.

21

Simulink® Release Notes

Version 7.2 (R2008b) Simulink Software
This table summarizes what’s new in V7.2 (R2008b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 22

• “Component-Based Modeling” on page 24

• “Embedded MATLAB Function Blocks” on page 28

• “Data Management” on page 30

• “Simulink File Management” on page 31

• “Block Enhancements” on page 31

• “User Interface Enhancements” on page 34

• “S-Functions” on page 66

• “MATLAB Changes Affecting Simulink” on page 67

Simulation Performance

Parallel Simulations in Rapid Accelerator Mode
Simulink now has the capability to run parallel simulations in Rapid
Accelerator mode using parfor on prebuilt Simulink models.

22

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008b

Version 7.2 (R2008b) Simulink® Software

You can now run parallel simulations in Rapid Accelerator mode with
different external inputs and tunable parameters. The sim command can be
called from a parfor loop if the model does not require a rebuild.

For more information, see “Running a Simulation Programmatically”.

Improved Rebuild Mechanism in Rapid Accelerator Mode
Simulink now has enhanced tuning of the solver and logging parameters in
Rapid Accelerator mode without requiring a rebuild.

An improved rebuild mechanism ensures that the model does not rebuild
when you change block diagram parameters (e.g., stop time, solver tolerances,
etc.). This enhancement significantly decreases the time for simulation in
Rapid Accelerator mode.

Data Type Size Limit on Accelerated Simulation Removed
In previous releases, accelerated simulation was not supported for models
that use integer or fixed-point data types greater than 32 bits in length.
In this release, the acceleration limit on integer and fixed-point data type
size has increased to 128 bits, the same as the limit for normal-mode, i.e.,
unaccelerated simulation.

New Initialization Behavior in Conditional, Action, and Iterator
Subsystems
For releases prior to 2008b, at the simulation start time, Simulink initializes
all blocks unconditionally and subsystems cannot reset the states. Release
2008b introduces behavior that mirrors the behavior of Real-Time Workshop.
For normal simulation mode, the Simulink block initialization method
(mdlInitializeConditions) can be called more than once at the start time if:

• the block is contained within a Conditional, Action, or Iterator subsystem

• the subsystem is configured to reset states when enabled (or triggered); and
the subsystem is enabled (or triggered) at the start time.

This new initialization behavior has the following effect on S-functions:

23

Simulink® Release Notes

• If you need to ensure that the initialization code in the
mdlInitializeConditions function runs only once, then move this
initialization code into the mdlStart method. The MathWorks recommends
this code change as a best practice.

• The change to the block initialization method, as described above, exposed
a bug in the S-function macro ssIsFirstInitCond for applications involving
an S-function within a Conditional, Action or Iterator subsystem. This bug
has been fixed in R2008b.

To determine if you consequently need to update your Simulink S-functions
for compatibility, compare the simulation results from R2007b or an
earlier release with those of R2008b. If they differ at the start time,
ssIsFirstInitCond is running more than once and you must regenerate and
recompile the appropriate Simulink S-functions.

For Real-Time Workshop, you must regenerate and recompile all S-function
targets and any Real-Time Workshop target for which the absolute time is
turned on. (If a third-party vendor developed your S-functions, have the
vendor regenerate and recompile them for you. The vendor can use the
SLDiagnostics feature to identify all S-functions in a model.)

Component-Based Modeling

Processor-in-the-Loop Mode in Model Block
In R2008b, Simulink has a new Model block simulation mode for
processor-in-the-loop (PIL) verification of generated code. This feature
requires Real-Time Workshop® Embedded Coder™ software. The feature
lets you test the automatically generated and cross-compiled object code on
your embedded processor by easily switching between Normal, Accelerator,
and PIL simulation modes in your original model. You can reuse test suites,
resulting in faster iteration between model development and generated code
verification. For more information, see “Referenced Model Simulation Modes”.

Conditionally Executed Subsystem Initial Conditions
R2008b of Simulink includes enhanced handling of initial conditions for
conditionally executed subsystems, Merge blocks, and Discrete-Time
Integrator blocks, improving consistency of simulation results.

24

Version 7.2 (R2008b) Simulink® Software

This feature allows you to select simplified initialization mode for
conditionally executed subsystems, Merge blocks, subsystem elapsed time,
and Discrete-Time Integrator blocks. The simplified initialization improves
the consistency of simulation results, especially for models that do not specify
initial conditions for conditional subsystem output ports, and for models that
have conditionally executed subsystem output ports connected to S-functions.

Note To use the new simplified initialization mode, you must activate this
feature.

Activating This Feature for New Models. For new models, you can
activate this feature as follows:

1 In the model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box opens.

2 Select Diagnostics > Data Validity.

The Data Validity Diagnostics pane opens.

3 In the Model Initialization section, set Underspecified initialization
detection to Simplified.

4 Select Diagnostics > Connectivity.

The Connectivity Diagnostics pane opens.

5 Set Mux blocks used to create bus signals to error.

6 Set Bus signal treated as vector to error.

7 Click OK.

For more information, see “Underspecified initialization detection”.

Migrating Existing Models. For existing models, The MathWorks
recommends using the Model Advisor to migrate your model to the new
simplified initialization mode settings.

25

Simulink® Release Notes

To migrate an existing model:

1 In the model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box opens.

2 Select Diagnostics > Data Validity.

The Data Validity Diagnostics pane opens.

3 In the Merge Block section, set Detect multiple driving blocks
executing at the same time step to error.

4 Click OK.

5 Simulate the model and ensure that it runs without errors.

6 Select Tools > Model Advisor.

The Model Advisor opens.

7 In the Model Advisor Task Manager, select By Product > Simulink.

8 Run Check for proper bus usage in the Model Advisor.

9 Run Check consistency of initialization parameters for Outport and
Merge blocks in the Model Advisor.

10 After you have resolved any errors identified by this check, click Proceed
to migrate your model to simplified initialization mode.

For information on using the Model Advisor, see “Consulting the Model
Advisor”in the Simulink User’s Guide.

For information on the Model Advisor checks, see “Check consistency of
initialization parameters for Outport and Merge blocks” in the Simulink
Reference.

26

Version 7.2 (R2008b) Simulink® Software

Compatibility Considerations. Activating this feature can cause
differences in simulation results, when compared to previous versions. Since
you must opt-in to this feature before any changes are made, there are no
issues for existing models. However, The MathWorks recommends that you
backup existing models before you migrate them, in case you want to return
to the original behavior.

Model Block Input Enhancement
Model block inputs can now be local and reusable. This capability reduces
global data usage and data copying when interfacing with code from a
referenced model, which can reduce memory usage during simulation and
increase the efficiency of generated code. This enhancement is always
relevant, so no configuration parameter is necessary or provided to control it.

One Parameter Controls Accelerator Mode Build Verbosity
In previous releases, the ModelReferenceSimTargetVerbose parameter
controlled verbosity when a referenced model was built for execution
in Accelerator mode, as specified by the Model block’s Simulation mode
parameter. The ModelReferenceSimTargetVerbose had no GUI equivalent.
See “Referenced Model Simulation Modes” and the Model block documentation
for more information.

A different parameter, AccelVerboseBuild, controls the verbosity when a
model is built in Simulink Accelerator mode or Rapid Accelerator mode,
as specified in the Simulation menu. See “Accelerating Models” for more
information. The GUI equivalent of the AccelVerboseBuild parameter
is Configuration Parameters > Optimization > Verbose accelerator
builds. See “Verbose accelerator builds” for more information.

All types of accelerated simulation entail code generation (though the code
is not visible to the user) and the two verbosity parameters control whether
a detailed account of the code generation process appears in the MATLAB
Command Window. However, providing separate verbosity parameters for
the two cases was unnecessary.

In R2008b, the ModelReferenceSimTargetVerbose parameter is deprecated
and has no effect. The AccelVerboseBuild parameter (Configuration
Parameters > Optimization > Verbose accelerator builds) now controls

27

Simulink® Release Notes

the verbosity for Simulink Accelerator mode, referenced model Accelerator
mode, and Rapid Accelerator mode.

Another parameter, RTWVerbose (Configuration Parameters > Real-Time
Workshop > Debug > Verbose build) controls the verbosity of Real-Time
Workshop code generation. This parameter is unaffected by the changes to
ModelReferenceSimTargetVerbose and AccelVerboseBuild.

Compatibility Considerations. In R2008b, trying to set
ModelReferenceSimTargetVerbose generates a warning message and has no
effect on verbosity. The warning says to use AccelVerboseBuild instead. The
default for AccelVerboseBuild is 'off'.

A model saved in R2008b will not include the
ModelReferenceSimTargetVerbose parameter. An R2008b model saved to an
earlier Simulink version that supports ModelReferenceSimTargetVerbose
will include that parameter, giving it the same value that AccelVerboseBuild
has in the R2008b version.

The effect of loading a model from an earlier Simulink version into R2008b
depends on the source version:

• Prior to R14: Neither parameter exists, so no compatibility consideration
arises.

• R14 – R2006b: Only ModelReferenceSimTargetVerbose exists. Copy its
value to AccelVerboseBuild.

• R2007a: Both parameters exist but neither has a GUI equivalent. Ignore
the value of ModelReferenceSimTargetVerbose and post no warning.

• R2007b – R2008a: Both parameters exist and AccelVerboseBuild and
has a GUI equivalent. If ModelReferenceSimTargetVerbose is 'on', post
a warning to use AccelVerboseBuild instead.

Embedded MATLAB Function Blocks

Support for Fixed-Point Word Lengths Up to 128 Bits
Embedded MATLAB Function blocks now support up to 128 bits of fixed-point
precision. This increase in maximum precision from 32 to 128 bits supports

28

Version 7.2 (R2008b) Simulink® Software

generating efficient code for targets with non-standard word sizes and allows
Embedded MATLAB Function blocks to work with large fixed-point signals.

Enhanced Simulation and Code Generation Options for
Embedded MATLAB Function Blocks
You can now specify embeddable code generation options from the Embedded
MATLAB Editor using a new menu item: Tools > Open RTW Target.
Simulation options continue to be available from Tools > Open Simulation
Target.

In addition, simulation and embeddable code generation options now appear
in a single dialog box. For details, see “Unified Simulation and Embeddable
Code Generation Options” on page 40.

Data Type Override Now Works Consistently on Outputs
When you enable data type override for Embedded MATLAB Function blocks,
outputs with explicit and inherited types are converted to the override type.
For example, if you set data type override to true singles, the Embedded
MATLAB Function block converts all outputs to single type and propagates
the override type to downstream blocks.

In previous releases, Embedded MATLAB Function blocks did not apply data
type override to outputs with inherited types. Instead, the inherited type
was preserved even if it did not match the override type, sometimes causing
errors during simulation.

Compatibility Consideration. Applying data type override rules to outputs
with inherited types may introduce the following compatibility issues:

• Downstream Embedded MATLAB Function blocks must be able to accept
the propagated override type. Therefore, you must allow data type override
for downstream blocks for which you set output type explicitly. Otherwise,
you may not be able to simulate your model.

• You might get unexpected simulation results if the propagated type uses
less precision than the original type.

29

Simulink® Release Notes

Improperly-Scaled Fixed-Point Relational Operators Now
Match MATLAB Results
When evaluating relational operators, Embedded MATLAB Function blocks
compute a common type that encompasses both input operands. In previous
releases, if the common type required more than 32 bits, Embedded MATLAB
Function blocks may have given different answers from MATLAB. Now,
Embedded MATLAB Function blocks give the same answers as MATLAB.

Compatibility Consideration. Some relational operators generate
multi-word code even if one of the fixed-point operands is not a multi-word
value. To work around this issue, cast both operands to the same fixed-point
type (using the same scaling method and properties).

Data Management

Support for Enumerated Data Types
Simulink models now support enumerated data types. For details, see:

• “Using Enumerated Data” in the Simulink User’s Guide

• “Using Enumerated Data in Stateflow® Charts” in the Stateflow User’s
Guide

• “Enumerated Data Types in Generated Code” in the Real-Time Workshop
User’s Guide

Simulink Bus Editor Enhancements
The Simulink Bus Editor can now filter displayed bus objects by either name
or relationship. See “Filtering Displayed Bus Objects” for details.

You can now fully customize the export and import capabilities of the Simulink
Bus Editor. See “Customizing Bus Object Import and Export” for details.

New Model Advisor Check for Proper Data Store Memory
Usage
A new Model Advisor check posts advice and warnings about the proper use
of Data Store Memory, Data Store Read, and Data Store Write blocks. See
“Check for proper usage of Data Store Memory blocks” for details.

30

Version 7.2 (R2008b) Simulink® Software

Simulink File Management

Model Dependencies Tools
Enhanced file dependency analysis can now:

• Find system target files

• Analyze STF_make_rtw_hook functions

• Analyze all configuration sets, not just the active set.

See “Scope of Dependency Analysis” in the Simulink User’s Guide.

Block Enhancements

Trigonometric Function Block
R2008b provides an enhanced Trigonometric Function block to:

• Support sincos

• Provide greater floating-point consistency

Math Function Block
In Simulink 2008b, an enhanced Math Function block provides greater
floating-point consistency.

Merge Block
R2008b provides enhanced handling of initial conditions for the Merge block
and thus improves the consistency of simulation results.

For more information, see “Conditionally Executed Subsystem Initial
Conditions” on page 24.

Discrete-Time Integrator Block
R2008b provides an enhanced handling of initial conditions for the
Discrete-Time Integrator block and thereby improves the consistency of
simulation results.

31

Simulink® Release Notes

For more information, see “Conditionally Executed Subsystem Initial
Conditions” on page 24.

Modifying a Link to a Library Block in a Callback Function Can
Cause Illegal Modification Errors
In this release, Simulink software can signal an error if a block callback
function, e.g., CopyFcn, modifies a link to a library block. For example, an
error occurs if you attempt to copy a library link to a self-modifying masked
subsystem whose CopyFcn deletes a block contained by the subsystem.
This change means that you cannot use block callback functions to create
self-modifying library blocks. Mask initialization code for a library block is
the only code allowed to modify the block.

Compatibility Consideration. Previous releases allowed use of block
callback functions to create self-modifying library blocks. Opening, editing, or
running models that contain links to such blocks can cause illegal modification
errors in the current release. As a temporary work around, you can break any
links in your model to a library block that uses callback functions to modify
itself. The best long-term solution is to move the self-modification code to the
block’s mask initialization section.

Random Number Block
In the dialog box for the Random Number block, the field Initial Seed has
been renamed Seed. The command-line parameter remains the same.

Signal Generator Block
The Signal Generator block now supports multidimensional signals. For a list
of blocks that support multidimensional signals, see “Signal Dimensions” in
the Simulink User’s Guide.

Sum Block
The accumulator of the Sum block now applies for all input signals of any
data type (for example, double, single, integer, and fixed-point). In previous
releases, the accumulator of this block was limited to inputs and outputs of
only integer or fixed-point data types.

32

Version 7.2 (R2008b) Simulink® Software

Switch Block
The Switch block now supports the immediate back propagation of a known
output data type to the first and third input ports. This occurs when you set
the Output data type parameter to Inherit: Inherit via internal
rule and select the Require all data port inputs to have the same data
type check box. In previous releases, this back propagation did not occur
immediately.

Uniform Random Number Block
In the dialog box for the Uniform Random Number block, the field Initial
Seed has been renamed Seed. The command-line parameter remains the
same.

Subsystem Block
The following subsystem blocks now have the property, IsSubsystemVirtual.
This read-only property returns the boolean values, on/off, to indicate if a
subsystem is virtual.

• Atomic Subsystem

• Code Reuse Subsystem

• Configurable Subsystem

• Enabled and Triggered Subsystem

• Enabled Subsystem

• For Iterator Subsystem

• Function-Call Subsystem

• If Action Subsystem

• Subsystem

• Switch Case Action Subsystem

• Triggered Subsystem

• While Iterator Subsystem

33

Simulink® Release Notes

Reshape BLock
The Reshape block Output dimensionality parameter has a new option,
Derive from reference input port. This option creates a second input
port, Ref, on the block and derives the dimensions of the output signal from
the dimensions of the signal input to the Ref input port. Correspondingly, the
Reshape block command line property, OutputDimensionality, has the new
option, Derive from reference input port.

Multidimensional Signals in Simulink Blocks
The following blocks were updated to support multidimensional signals. See
Signal Dimensions in the Simulink documentation for further details.

• Assertion

• Extract Bits

• Check Discrete Gradient

• Check Dynamic Gap

• Check Dynamic Lower Bound

• Check Dynamic Range

• Check Dynamic Upper Bound

• Check Input Resolution

• Check Static Gap

• Check Static Lower Bound

• Check Static Range

• Check Static Upper Bound

• Data Type Scaling Strip

• Wrap to Zero

User Interface Enhancements

Sample Time
The display of sample time information has been expanded to include:

34

Version 7.2 (R2008b) Simulink® Software

• Signal lines labeling with new color-independent Annotations

• A new Sample Time Legend maps the sample time Colors and
Annotations to sample times.

• A distinct color for indicating that a block and signal are asynchronous.

The section “Modeling and Simulation of Discrete Systems” has been renamed
“Working with Sample Times” and has been significantly expanded to provide
a comprehensive review of sample times and a discussion on the new Sample
Time Legend and Sample Time Display features. For more information, see
“Working with Sample Times”.

Model Advisor
In R2008b, the Model Advisor is enhanced with:

• A model and data restore point that provides you with the ability to revert
changes made in response to advice from the Model Advisor

• Context-sensitive help available for Model Advisor checks

• Tristate check boxes that visually indicate selected and cleared checks
in folders

• A system selector for choosing the system level that the Model Advisor
checks

See “Consulting the Model Advisor” in the Simulink User’s Guide.

“What’s This?” Context-Sensitive Help for Commonly Used
Blocks
R2008b introduces context-sensitive help for parameters that appear in the
following commonly used blocks in Simulink:

Bus Creator
Bus Selector
Constant
Data Type Conversion
Demux
Discrete-Time Integrator
Gain

35

Simulink® Release Notes

Inport
Integrator
Logical Operator
Mux
Outport
Product
Relational Operator
Saturation
Subsystem
Sum
Switch
Terminator
Unit Delay

This feature provides quick access to a detailed description of the parameters,
saving you the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after right-clicking theMultiplication parameter for the Gain
block.

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

Compact Icon Option Displays More Blocks in Library Browser
This release introduces a compact icon option that maximizes the number of
blocks and libraries visible in the Library Browser’s Library pane without
scrolling (see “Library Pane”).

36

Version 7.2 (R2008b) Simulink® Software

Signal Logging and Test Points Are Controlled Independently
In previous releases, a signal could be logged only if it was also a test point.
Therefore, selecting Log signal data in the Signal Properties dialog box
automatically selected Test point, and disabled it so that it could not be
cleared. However, a signal can be a test point without being logged, so
clearing Log signal data did not automatically clear Test point. The
same asymmetric behavior occurred programmatically with the underlying
DataLogging and TestPoint parameters.

In R2008b, no connection exists between enabling logging for a signal and
making the signal a test point. Either, both, or neither capability can be
enabled for any signal. Selecting and clearing Log signal data therefore
has no effect on the setting of Test point, and similarly for the underlying
parameters. See “Logging Signals” and “Working with Test Points” for more
information.

To reflect the independence of logging and test points, the command Test
Point Indicators in the Simulink Format > Port/Signal Displays
menu has been renamed Testpoint/Logging Indicators. The effect of
the command, the graphical indicators displayed, and the meaning of the
underlying parameter ShowTestPointIcons, are all unchanged.

Compatibility Considerations. Scripts and practices that relied on Log
signal data to automatically set a test point must be changed to set the test
point explicitly. The relevant set_param commands are:

set_param(PortHandle(n),'DataLogging','on')
set_param(PortHandle(n),'TestPoint','on')

To disable either capability, set the relevant parameter to 'off'. See
“Enabling Signal Logging Programmatically” for an example.

Signal Logging Consistently Retains Duplicate Signal Regions
A virtual signal is a signal that graphically represents other signals or parts
of other signals. Virtual signals are purely graphical entities; they have
no functional or mathematical significance. The nonvirtual components
of a virtual signal are called regions. For example, if Mux block (which is
a virtual block) inputs two nonvirtual signals, the block outputs a virtual

37

Simulink® Release Notes

signal that has two regions. See “Virtual Signals” and “Mux Signals” for
more information.

In previous releases, when a virtual signal contains duplicate regions,
signal logging excluded all but one of the duplicates in some contexts, but
included all of the duplicates in other contexts, giving inconsistent results.
For example, if the same nonvirtual signal is connected to two input ports
of a Mux block, that one signal is the source of two regions in the Mux
block output. Previously, if that output was being logged in Normal mode
simulation, the log object would contain data for only one of the regions,
because the other was eliminated as a duplicate.

In R2008a, Simulink no longer eliminates duplicate regions when logging the
output of virtual blocks like Mux or Selector blocks. Simulink now logs all
regions, which appear in a Simulink.TsArray object. The duplicate regions
have unique names as follows:

<signal_name>_reg<#counter>

This change affects signal logs and all capabilities that depend on signal
logging, such as scopes and signal viewers.

Compatibility Considerations. In cases where signal logging previously
omitted duplicate regions, signal logs will be now be larger, and scopes
and signal viewers will now show more data. This change could give the
impression that the results of simulation have changed, but actually only the
logging of those results has changed. No action is needed unless:

• A dependency exists on the exact size of a log or the details of its contents.

• The size and details have changed due to the inclusion of previously
omitted signals.

In such a case, make changes as needed to accept the changed logging
behavior. See “Logging Signals” for more information.

Simulink Configuration Parameters
In R2008b, the following Simulink configuration parameters are updated:

38

Version 7.2 (R2008b) Simulink® Software

Note The command-line parameter name is not changing for these
parameters.

Location Previous Parameter New Parameter

Solver States shape preservation /
ShapePreserveControl

Shape preservation /
ShapePreserveControl

Solver Consecutive min
step size violations /
MaxConsecutiveMinStep

Number of consecutive
min steps /
MaxConsecutiveMinStep

Solver Consecutive zero crossings
relative tolerance /
ConsecutiveZCsStepRelTol

Time tolerance /
ConsecutiveZCsStepRelTol

Solver Zero crossing
location algorithm /
ZeroCrosAlgorithm

Algorithm /
ZeroCrosAlgorithm

Solver Zero crossing location
threshold / ZCThreshold

Signal threshold/
ZCThreshold

Solver Number of consecutive
zero crossings allowed /
MaxConsecutiveZCs

Number of consecutive
zero crossings /
MaxConsecutiveZCs

Optimization Eliminate superfluous
temporary variables
(Expression folding) /
ExpressionFolding

Eliminate superfluous
local variables (Expression
folding) / ExpressionFolding

Optimization Remove internal state
zero initialization /
ZeroInternalMemoryAtStartup

Remove internal data
zero initialization /
ZeroInternalMemoryAtStartup

In R2008b, the following Simulink configuration parameters have moved:

Note The command-line parameter name is not changing for these
parameters.

39

Simulink® Release Notes

Parameter Old Location New Location

Check undefined
subsystem initial output

Diagnostics > Compatibility Diagnostics > Data Validity

Check preactivation output
of execution context

Diagnostics > Compatibility Diagnostics > Data Validity

Check runtime output of
execution context

Diagnostics > Compatibility Diagnostics > Data Validity

In R2008b, the Optimization > Minimize array reads using temporary
variables parameter has been obsoleted.

Model Help Menu Update
The Simulink model Help menu now includes links to block support tables for
the following products, if they are installed.

• Simulink product

• Communications Blockset™

• Signal Processing Blockset

• Video and Image Processing Blockset™

To obtain the block support tables for all of these products that are installed,
select Help > Block Support Table > All Tables.

In previous releases, Help > Block Support Table provided such tables
only for the main Simulink library.

Unified Simulation and Embeddable Code Generation Options
You can now specify both simulation and embeddable code generation options
in the Configuration Parameters dialog box. The simulation options apply
only to Embedded MATLAB Function blocks, Stateflow charts, and Truth
Table blocks.

The following table summarizes changes that apply for Embedded MATLAB
Function blocks:

40

Version 7.2 (R2008b) Simulink® Software

Type of
Model

Simulation Options Embeddable Code Generation
Options

Nonlibrary Migrated from the Simulation Target
dialog box to the Configuration
Parameters dialog box.

See:

• “Nonlibrary Models: Changes for
the General Pane of the Simulation
Target Dialog Box” on page 42

• “Nonlibrary Models: Changes for the
Custom Code Pane of the Simulation
Target Dialog Box” on page 44

• “Nonlibrary Models: Changes for the
Description Pane of the Simulation
Target Dialog Box” on page 45

New menu item in the Embedded
MATLAB Editor for specifying code
generation options for nonlibrary
models: Tools > Open RTW Target

New options in the Real-Time
Workshop pane of the Configuration
Parameters dialog box.

See:

• “Nonlibrary Models: Enhancement
for the Real-Time Workshop:
Symbols Pane of the Configuration
Parameters Dialog Box” on page 54

• “Nonlibrary Models: Enhancement
for the Real-Time Workshop:
Custom Code Pane of the
Configuration Parameters Dialog
Box” on page 55

Library Migrated from the Simulation Target
dialog box to the Configuration
Parameters dialog box.

See:

• “Library Models: Changes for the
General Pane of the Simulation
Target Dialog Box” on page 49

• “Library Models: Changes for the
Custom Code Pane of the Simulation
Target Dialog Box” on page 50

• “Library Models: Changes for the
Description Pane of the Simulation
Target Dialog Box” on page 51

New menu item in Embedded MATLAB
Editor for specifying custom code
generation options for library models:
Tools > Open RTW Target

For a description of these options, see
“Library Models: Support for Specifying
Custom Code Options in the Real-Time
Workshop Pane of the Configuration
Parameters Dialog Box” on page 55.

41

Simulink® Release Notes

For details about the new options, see “Configuration Parameters Dialog Box”
in the Simulink Graphical User Interface documentation. For compatibility
information, see “Compatibility Considerations” on page 61.

For changes specific to Stateflow, see “Unified Simulation and Embeddable
Code Generation Options for Stateflow Charts and Truth Table Blocks” in the
Stateflow and Stateflow® Coder™ release notes.

Nonlibrary Models: Changes for the General Pane of the Simulation
Target Dialog Box. The following sections describe changes in the panes of
the Simulation Target dialog box for nonlibrary models.

42

Version 7.2 (R2008b) Simulink® Software

Release Appearance

Previous General pane of the Simulation Target dialog box

New Simulation Target pane of the Configuration Parameters dialog box

For details, see “Nonlibrary Models: Mapping of GUI Options from the
Simulation Target Dialog Box to the Configuration Parameters Dialog Box”
on page 46.

43

Simulink® Release Notes

Nonlibrary Models: Changes for the Custom Code Pane of the
Simulation Target Dialog Box.

Release Appearance

Previous Custom Code pane of the Simulation Target dialog box

New Simulation Target > Symbols pane of the Configuration Parameters dialog box

New Simulation Target > Custom Code pane of the Configuration Parameters dialog
box

44

Version 7.2 (R2008b) Simulink® Software

Release Appearance

For details, see “Nonlibrary Models: Mapping of GUI Options from the
Simulation Target Dialog Box to the Configuration Parameters Dialog Box”
on page 46.

Nonlibrary Models: Changes for the Description Pane of the
Simulation Target Dialog Box. In previous releases, the Description
pane of the Simulation Target dialog box appeared as follows.

45

Simulink® Release Notes

In R2008b, these options are no longer available. For older models where the
Description pane contained information, the text is now accessible only
in the Model Explorer. When you select Simulink Root > Configuration
Preferences in the Model Hierarchy pane, the text appears in the
Description field for that model.

Nonlibrary Models: Mapping of GUI Options from the Simulation
Target Dialog Box to the Configuration Parameters Dialog Box.
For nonlibrary models, the following table maps each GUI option in
the Simulation Target dialog box to the equivalent in the Configuration
Parameters dialog box. The options are listed in order of appearance in the
Simulation Target dialog box.

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

General > Enable
debugging / animation

Simulation Target > Enable
debugging / animation

on

46

Version 7.2 (R2008b) Simulink® Software

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

General > Enable overflow
detection (with debugging)

Simulation Target > Enable
overflow detection (with
debugging)

on

General > Echo expressions
without semicolons

Simulation Target >
Echo expressions without
semicolons

on

General > Build Actions Simulation Target >
Simulation target build
mode

Incremental build

None Simulation Target >
Custom Code > Source file

''

Custom Code > Include
Code

Simulation Target >
Custom Code > Header file

''

Custom Code > Include
Paths

Simulation Target >
Custom Code > Include
directories

''

Custom Code > Source
Files

Simulation Target >
Custom Code > Source files

''

Custom Code > Libraries Simulation Target >
Custom Code > Libraries

''

Custom Code >
Initialization Code

Simulation Target >
Custom Code > Initialize
function

''

Custom Code >
Termination Code

Simulation Target >
Custom Code > Terminate
function

''

Custom Code > Reserved
Names

Simulation Target >
Symbols > Reserved names

{}

Custom Code > Use these
custom code settings for all
libraries

None Not applicable

47

Simulink® Release Notes

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

Description > Description None

Note If you load an older
model that contained
user-specified text in the
Description field, that
text now appears in the
Model Explorer. When you
select Simulink Root >
Configuration Preferences
in the Model Hierarchy
pane, the text appears in the
Description field for that
model.

Not applicable

Description > Document
Link

None Not applicable

Note For nonlibrary models, Simulation Target options in the
Configuration Parameters dialog box are also available in the Model Explorer.
When you select Simulink Root > Configuration Preferences in the
Model Hierarchy pane, you can select Simulation Target in the Contents
pane to access the options.

48

Version 7.2 (R2008b) Simulink® Software

Library Models: Changes for the General Pane of the Simulation
Target Dialog Box. In previous releases, the General pane of the
Simulation Target dialog box for library models appeared as follows.

In R2008b, these options are no longer available. All library models inherit
these option settings from the main model to which the libraries are linked.

49

Simulink® Release Notes

Library Models: Changes for the Custom Code Pane of the Simulation
Target Dialog Box.

Release Appearance

Previous Custom Code pane of the Simulation Target dialog box

New Simulation Target pane of the Configuration Parameters dialog box

50

Version 7.2 (R2008b) Simulink® Software

For details, see “Library Models: Mapping of GUI Options from the Simulation
Target Dialog Box to the Configuration Parameters Dialog Box” on page 52.

Library Models: Changes for the Description Pane of the Simulation
Target Dialog Box. In previous releases, the Description pane of the
Simulation Target dialog box appeared as follows.

In R2008b, these options are no longer available. For older models where the
Description pane contained information, the text is discarded.

51

Simulink® Release Notes

Library Models: Mapping of GUI Options from the Simulation Target
Dialog Box to the Configuration Parameters Dialog Box. For library
models, the following table maps each GUI option in the Simulation Target
dialog box to the equivalent in the Configuration Parameters dialog box. The
options are listed in order of appearance in the Simulation Target dialog box.

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

General > Enable
debugging / animation

None Not applicable

General > Enable overflow
detection (with debugging)

None Not applicable

General > Echo expressions
without semicolons

None Not applicable

General > Build Actions None Not applicable
None Simulation Target > Source

file
''

Custom Code > Include
Code

Simulation Target >Header
file

''

Custom Code > Include
Paths

Simulation Target >
Include directories

''

Custom Code > Source
Files

Simulation Target > Source
files

''

Custom Code > Libraries Simulation Target >
Libraries

''

Custom Code >
Initialization Code

Simulation Target >
Initialize function

''

Custom Code >
Termination Code

Simulation Target >
Terminate function

''

Custom Code > Reserved
Names

None Not applicable

52

Version 7.2 (R2008b) Simulink® Software

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

Custom Code > Use local
custom code settings (do
not inherit from main
model)

Simulation Target > Use
local custom code settings
(do not inherit from main
model)

off

Description > Description None Not applicable
Description > Document
Link

None Not applicable

Note For library models, Simulation Target options in the Configuration
Parameters dialog box are not available in the Model Explorer.

53

Simulink® Release Notes

Nonlibrary Models: Enhancement for the Real-Time Workshop:
Symbols Pane of the Configuration Parameters Dialog Box. In
previous releases, the Real-Time Workshop > Symbols pane of the
Configuration Parameters dialog box appeared as follows.

In R2008b, a new option is available in this pane: Reserved names. You
can use this option to specify a set of keywords that the Real-Time Workshop
build process should not use. This action prevents naming conflicts between
functions and variables from external environments and identifiers in the
generated code.

You can also choose to use the reserved names specified in the Simulation
Target > Symbols pane to avoid entering the same information twice for
the nonlibrary model. Select the option Use the same reserved names as
Simulation Target.

54

Version 7.2 (R2008b) Simulink® Software

Nonlibrary Models: Enhancement for the Real-Time Workshop:
Custom Code Pane of the Configuration Parameters Dialog Box. In
previous releases, the Real-Time Workshop > Custom Code pane of the
Configuration Parameters dialog box appeared as follows.

In R2008b, a new option is available in this pane: Use the same custom
code settings as Simulation Target. You can use this option to copy the
custom code settings from the Simulation Target > Custom Code pane to
avoid entering the same information twice for the nonlibrary model.

Library Models: Support for Specifying Custom Code Options in the
Real-Time Workshop Pane of the Configuration Parameters Dialog
Box. In R2008b, you can specify custom code options in the Configuration
Parameters dialog box, as shown:

55

Simulink® Release Notes

For more information, see “Real-Time Workshop Pane: Custom Code” in the
Real-Time Workshop Reference documentation.

Mapping of Target Object Properties to Parameters in the
Configuration Parameters Dialog Box
Previously, you could programmatically set options for simulation and
embeddable code generation of models containing Embedded MATLAB
Function blocks, Stateflow charts, or Truth Table blocks by accessing the API
properties of Target objects sfun and rtw, respectively. In R2008b, the API
properties of Target objects sfun and rtw are replaced by parameters that you
configure using the commands get_param and set_param.

For compatibility details, see “Compatibility Considerations” on page 61.

56

Version 7.2 (R2008b) Simulink® Software

Mapping of Object Properties to Simulation Parameters for
Nonlibrary Models. The following table maps API properties of the Target
object sfun for nonlibrary models to the equivalent parameters in R2008b.
Object properties are listed in alphabetical order; those not listed in the table
do not have equivalent parameters in R2008b.

Old sfun Object Property Old Option
in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CodeFlagsInfo
('debug')

General
> Enable
debugging /
animation

SFSimEnableDebug

string - off, on
Simulation
Target > Enable
debugging /
animation

CodeFlagsInfo
('overflow')

General
> Enable
overflow
detection
(with
debugging)

SFSimOverflowDetection

string - off, on
Simulation
Target > Enable
overflow
detection (with
debugging)

CodeFlagsInfo
('echo')

General
> Echo
expressions
without
semicolons

SFSimEcho

string - off, on
Simulation
Target > Echo
expressions
without
semicolons

CustomCode Custom Code
> Include
Code

SimCustomHeaderCode

string -
Simulation
Target >
Custom Code
> Header file

CustomInitializer Custom
Code >
Initialization
Code

SimCustomInitializer

string -
Simulation
Target >
Custom Code
> Initialize
function

57

Simulink® Release Notes

Old sfun Object Property Old Option
in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CustomTerminator Custom
Code >
Termination
Code

SimCustomTerminator

string -
Simulation
Target >
Custom Code
> Terminate
function

ReservedNames Custom Code
> Reserved
Names

SimReservedNameArray

string array - {}
Simulation
Target >
Symbols >
Reserved
names

UserIncludeDirs Custom Code
> Include
Paths

SimUserIncludeDirs

string -
Simulation
Target >
Custom Code
> Include
directories

UserLibraries Custom Code
> Libraries

SimUserLibraries

string -
Simulation
Target >
Custom Code
> Libraries

UserSources Custom Code
> Source Files

SimUserSources

string -
Simulation
Target >
Custom Code
> Source files

Mapping of Object Properties to Simulation Parameters for Library
Models. The following table maps API properties of the Target object sfun
for library models to the equivalent parameters in R2008b. Object properties
are listed in alphabetical order; those not listed in the table do not have
equivalent parameters in R2008b.

58

Version 7.2 (R2008b) Simulink® Software

Old sfun Object Property Old Option
in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CustomCode Custom Code
> Include
Code

SimCustomHeaderCode

string -
Simulation
Target >Header
file

CustomInitializer Custom
Code >
Initialization
Code

SimCustomInitializer

string -
Simulation
Target >
Initialize
function

CustomTerminator Custom
Code >
Termination
Code

SimCustomTerminator

string -
Simulation
Target >
Terminate
function

UseLocalCustomCodeSettings Custom Code
> Use local
custom code
settings (do
not inherit
from main
model)

SimUseLocalCustomCode

string - off, on
Simulation
Target > Use
local custom
code settings
(do not inherit
from main
model)

UserIncludeDirs Custom Code
> Include
Paths

SimUserIncludeDirs

string -
Simulation
Target >
Include
directories

UserLibraries Custom Code
> Libraries

SimUserLibraries

string -
Simulation
Target >
Libraries

UserSources Custom Code
> Source Files

SimUserSources

string -
Simulation
Target > Source
files

59

Simulink® Release Notes

Mapping of Object Properties to Code Generation Parameters for
Library Models. The following table maps API properties of the Target
object rtw for library models to the equivalent parameters in R2008b. Object
properties are listed in alphabetical order; those not listed in the table do not
have equivalent parameters in R2008b.

Old rtw Object Property Old Option
in the RTW
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CustomCode Custom Code
> Include
Code

CustomHeaderCode

string -
Real-Time
Workshop >
Header file

CustomInitializer Custom
Code >
Initialization
Code

CustomInitializer

string -
Real-Time
Workshop
> Initialize
function

CustomTerminator Custom
Code >
Termination
Code

CustomTerminator

string -
Real-Time
Workshop >
Terminate
function

UseLocalCustomCodeSettings Custom Code
> Use local
custom code
settings (do
not inherit
from main
model)

RTWUseLocalCustomCode

string - off, on
Real-Time
Workshop > Use
local custom
code settings
(do not inherit
from main
model)

UserIncludeDirs Custom Code
> Include
Paths

CustomInclude

string -
Real-Time
Workshop
> Include
directories

60

Version 7.2 (R2008b) Simulink® Software

Old rtw Object Property Old Option
in the RTW
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

UserLibraries Custom Code
> Libraries

CustomLibrary

string -
Real-Time
Workshop >
Libraries

UserSources Custom Code
> Source
Files

CustomSource

string -
Real-Time
Workshop >
Source files

Compatibility Considerations. When you load and save older models in
R2008b, not all target property settings are preserved.

What Happens When You Load an Older Model in R2008b

When you use R2008b to load a model created in an earlier version, dialog box
options and the equivalent object properties for simulation and embeddable
code generation targets migrate automatically to the Configuration
Parameters dialog box, except in the cases that follow.

For the simulation target (sfun) of a nonlibrary model, these options and
properties do not migrate to the Configuration Parameters dialog box.

Option in the Simulation Target Dialog
Box of a Nonlibrary Model

Equivalent Object Property

Custom Code > Use these custom code
settings for all libraries

ApplyToAllLibs

61

Simulink® Release Notes

Option in the Simulation Target Dialog
Box of a Nonlibrary Model

Equivalent Object Property

Description > Description Description

Note If you load an older model that contained
user-specified text in the Description
field, that text now appears in the Model
Explorer. When you select Simulink Root >
Configuration Preferences in the Model
Hierarchy pane, the text appears in the
Description field for that model.

Description > Document Link Document

For the simulation target (sfun) of a library model, these options and
properties do not migrate to the Configuration Parameters dialog box.

Option in the Simulation Target Dialog
Box of a Library Model

Equivalent Object Property

General > Enable debugging / animation CodeFlagsInfo('debug')

General > Enable overflow detection (with
debugging)

CodeFlagsInfo('overflow')

General > Echo expressions without
semicolons

CodeFlagsInfo('echo')

General > Build Actions None
Custom Code > Reserved Names ReservedNames

Description > Description Description

Description > Document Link Document

62

Version 7.2 (R2008b) Simulink® Software

For the embeddable code generation target (rtw) of a library model, these
options and properties do not migrate to the Configuration Parameters dialog
box.

Option in the RTW Target Dialog Box of
a Library Model

Equivalent Object Property

General > Comments in generated code CodeFlagsInfo('comments')

General > Use bitsets for storing state
configuration

CodeFlagsInfo('statebitsets')

General > Use bitsets for storing boolean
data

CodeFlagsInfo('databitsets')

General > Compact nested if-else using
logical AND/OR operators

CodeFlagsInfo('emitlogicalops')

General > Recognize if-elseif-else in
nested if-else statements

CodeFlagsInfo('elseifdetection')

General > Replace constant expressions
by a single constant

CodeFlagsInfo('constantfolding')

General > Minimize array reads using
temporary variables

CodeFlagsInfo('redundantloadelimination')

General > Preserve symbol names CodeFlagsInfo('preservenames')

General > Append symbol names with
parent names

CodeFlagsInfo('preservenameswithparent')

General > Use chart names with no
mangling

CodeFlagsInfo('exportcharts')

General > Build Actions None
Custom Code > Reserved Names ReservedNames

Description > Description Description

Description > Document Link Document

63

Simulink® Release Notes

What Happens When You Save an Older Model in R2008b

When you use R2008b to save a model created in an earlier version,
parameters for simulation and embeddable code generation from the
Configuration Parameters dialog box are saved. However, properties of API
Target objects sfun and rtw are not saved if those properties do not have an
equivalent parameter in the Configuration Parameters dialog box. In R2008b,
this behavior applies even if you choose to save the model as an older version
(for example, R2007a).

New Parameters in the Configuration Parameters Dialog Box
for Simulation and Embeddable Code Generation
In R2008b, new parameters are added to the Configuration Parameters dialog
box for simulation and embeddable code generation of models that contain
Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

New Simulation Parameters for Nonlibrary Models. The following
table lists the new simulation parameters that apply to nonlibrary models.

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

SimBuildMode

string –
sf_incremental_build,
sf_nonincremental_build,
sf_make, sf_make_clean,
sf_make_clean_objects

Simulation Target >
Simulation target build
mode

Specifies how you build the
simulation target for a model.

SimCustomSourceCode

string -
Simulation Target >
Custom Code > Source file

Enter code lines to appear
near the top of a generated
source code file.

New Simulation Parameter for Library Models. The following table lists
the new simulation parameter that applies to library models.

64

Version 7.2 (R2008b) Simulink® Software

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

SimCustomSourceCode

string -
Simulation Target > Source
file

Enter code lines to appear
near the top of a generated
source code file.

New Code Generation Parameters for Nonlibrary Models. The
following table lists the new code generation parameters that apply to
nonlibrary models.

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

ReservedNameArray

string array - {}
Real-Time Workshop >
Symbols > Reserved names

Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code.

RTWUseSimCustomCode

string – off, on
Real-Time Workshop >
Custom Code > Use the
same custom code settings
as Simulation Target

Specify whether to use the
same custom code settings as
those specified for simulation.

UseSimReservedNames

string – off, on
Real-Time Workshop
> Symbols > Use the
same reserved names as
Simulation Target

Specify whether to use the
same reserved names as those
specified for simulation.

New Code Generation Parameters for Library Models. The following
table lists the new code generation parameters that apply to library models.

65

Simulink® Release Notes

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

CustomSourceCode

string –
Real-Time Workshop >
Source file

Enter code lines to appear
near the top of a generated
source code file.

RTWUseSimCustomCode

string – off, on
Real-Time Workshop >
Use the same custom code
settings as Simulation
Target

Specify whether to use the
same custom code settings as
those specified for simulation.

S-Functions

Ada S-Functions
In future releases, Simulink will not have a built-in Ada S-function capability.
As a mitigation strategy, call Ada code from Simulink using standard Ada
95 language features and the Simulink C-MEX S-function API. For details of
this process, please contact Technical Support at The MathWorks.

Legacy Code Tool Enhancement
The Legacy Code Tool data structure has been enhanced with a new
S-function options field, singleCPPMexFile, which when set to true (1).

• Requires you to generate and manage an inlined S-function as only one file
(.cpp) instead of two (.c and .tlc)

• Maintains model code style—level of parentheses usage and preservation
of operand order in expressions and condition expressions in if
statements—as specified by model configuration parameters.

When you choose not to use this option, code generated by the Legacy Code
Tool does not reflect code style configuration settings and requires you to
manage C-MEX and TLC files.

For more information, see:

66

Version 7.2 (R2008b) Simulink® Software

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions documentation

• “Automating the Generation of Files for Fully Inlined S-Functions Using
Legacy Code Tool” in the Real-Time Workshop documentation

• legacy_code function reference page

Compatibility Considerations.

• If you upgrade from an earlier release, you can continue to use S-functions
generated from the Legacy Code Tool available in earlier releases. You can
continue to compile the S-function source code and you can continue to use
the compiled output from an earlier release without recompiling the code.

• If you set the new singleCPPMexFile options field to true (1) when creating
an S-function, you cannot use that S-function, in source or compiled form,
with versions of Simulink earlier than Version 7.2 (R2008b).

MATLAB Changes Affecting Simulink

Changes to MATLAB Startup Options
The matlab command line arguments -memmgr and -check_malloc are
deprecated and will be removed in a future release.

For more information, see “Changes to matlab Memory Manager Startup
Options” in the MATLAB Release Notes.

Handle Graphics Not Supported Under -nojvm Startup Option
If you start MATLAB using the command matlab -nojvm (which disables
Java), you will receive warnings when using many graphical tools, for
example, when you create figures, print Simulink models, or view Simulink
scopes.

For more information, see Changes to -nojvm Startup Option in the Desktop
Tools and Development Environment release notes.

67

Simulink® Release Notes

Version 7.1 (R2008a) Simulink Software
This table summarizes what’s new in V7.1 (R2008a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 68

• “Component-Based Modeling” on page 69

• “Embedded MATLAB Function Blocks” on page 70

• “Data Management” on page 71

• “Simulink File Management” on page 77

• “Block Enhancements” on page 78

• “User Interface Enhancements” on page 80

• ““What’s This?” Context-Sensitive Help Available for Simulink
Configuration Parameters Dialog” on page 82

• “S-Functions” on page 83

Simulation Performance

Rapid Accelerator
Improved Rapid Accelerator sim-command performance when running long
simulations of small models on Microsoft® Windows® platforms.

68

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2008a

Version 7.1 (R2008a) Simulink® Software

Long Rapid Accelerator mode simulations of small models invoked by the sim
command under the Microsoft Windows operating system now run faster.

Additional Zero Crossing Algorithm
A second zero crossing algorithm that is especially useful in systems exhibiting
strong chattering behavior has been added for use with variable step solvers.

The new algorithm is selected by choosing Adaptive from the Zero crossing
location algorithm option in the Solver pane of the Configuration Parameter
dialog. The default algorithm is Non-Adaptive, which is the algorithm used
prior to this release.

For more information, see “Zero-Crossing Algorithms”.

Component-Based Modeling

Efficient Parent Model Rebuilds
In previous releases, changing a referenced model that executed in Accelerator
mode or was used for code generation triggered rebuilding every model that
directly or indirectly referenced the changed model. The rebuilding occurred
even if the change to the referenced model had no effect on its interface
to its parent(s).

In R2008a, changing a referenced model that executes in Accelerator mode
or is used for code generation triggers rebuilding a parent model only when
the change directly affects the referenced model’s interface to the parent
model. This behavior eliminates unnecessary code regeneration, which can
significantly reduce the time needed to update a diagram.

The faster diagram update has no effect on simulation behavior or
performance, but may change the messages that appear in the MATLAB
Command Window. See “Referencing a Model” for information about model
referencing.

Scalar Root Inputs Passed Only by Reference
The Configuration Parameters > Model Referencing > Pass scalar root
inputs by value option is Off by default, indicating that scalar root inputs

69

Simulink® Release Notes

are passed by reference. In previous releases, setting the option to On affected
both simulation and generated code, and caused scalar root inputs to be
passed by value. In R2008a, the option has no effect on simulation: scalar root
inputs are now always passed by reference, regardless of the setting of Pass
scalar root inputs by value. The effect of the option on code generation is
the same as in previous releases. See “Pass scalar root inputs by value for
Real-Time Workshop” for more information.

Unlimited Referenced Models
In previous releases, Microsoft Windows imposed a limit on the number of
models that could be referenced in Accelerator mode in a model hierarchy.
This limitation is removed in R2008a. Under Microsoft Windows, as on all
other platforms, the number of referenced models that can appear in a model
hierarchy is effectively unlimited. See “Referencing a Model” for information
about model referencing.

Embedded MATLAB Function Blocks

Nontunable Structure Parameters
Embedded MATLAB Function blocks now support nontunable MATLAB
structure parameters. For more information, see “Working with Non-Tunable
Structure Parameters in Embedded MATLAB Function Blocks”.

Bidirectional Traceability
You can navigate between a line of generated code and its corresponding line
of source code in Embedded MATLAB Function blocks. For more information,
see “Using Traceability in Embedded MATLAB Function Blocks”.

Specify Scaling Explicitly for Fixed-Point Data
When you define data of fixed-point type in Embedded MATLAB Function
blocks, you must specify the scaling explicitly in the General pane of the
Data properties dialog box. For example, you cannot enter an incomplete
specification such as fixdt(1,16) in the Type field. If you do not specify
scaling explicitly, you will see an error message when you try to simulate
your model.

70

Version 7.1 (R2008a) Simulink® Software

To ensure that the data type definition is valid for fixed-point data, perform
one of these steps in the General pane of the Data properties dialog box:

• Use a predefined option in the Type drop-down menu.

• Use the Data Type Assistant to specify the Mode as fixed-point.

Compatibility Considerations. Previously, you could omit scaling in
data type definitions for fixed-point data. Such data types were treated as
integers with the specified sign and word length. This behavior has changed.
Embedded MATLAB Function blocks created in earlier versions may now
generate errors if they contain fixed-point data with no scaling specified.

Data Management

Array Format Cannot Be Used to Export Multiple Matrix Signals
When you export signals to a workspace in Array format from more than one
outport, none of the signals can be a matrix signal. In previous releases,
violating this rule did not always cause an error, but the matrix data was not
exported correctly. In R2008a, violating the rule always causes an error, and
no data export occurs. See “Array” for complete information about Array
format requirements.

When exporting data to a workspace in Array format from multiple outports,
use a Reshape block to convert any matrix signal to a one-dimensional (1-D)
array. This restriction applies only to Array format. If you specify either
Structure or Structure with time format, you can export matrix signals
to a workspace from multiple outports without first converting the signals to
vectors.

Compatibility Considerations. The more stringent error checking in
R2008a can cause models that export data in Array format from multiple
outports to generate errors rather than silently exporting matrix data
incorrectly. To eliminate such errors, use a Reshape block to convert any
matrix signal to a vector, or switch to Structure or Structure with time
format. See “Exporting Data to the MATLAB Workspace” for information
about data export.

71

Simulink® Release Notes

Bus Editor Upgraded
The Simulink Bus Editor has been reimplemented to provide a GUI interface
similar to that of the Model Explorer, and to provide several new capabilities,
including importing/exporting data from MAT-files and M-files, defining bus
objects and elements with the Data Type Assistant, and creating and viewing
bus hierarchies (nested bus objects). See “Using the Bus Editor” for details.

Changing Nontunable Values Does Not Affect the Current
Simulation
In previous releases, changing the value of any variable or parameter during
simulation took effect immediately. In R2008a, only changes to tunable
variables and parameters take effect immediately. Other changes have no
effect until the next simulation begins. This modification causes simulation
behavior to match generated code behavior when the values of nontunable
variables and parameters change, and it improves efficiency by eliminating
unnecessary re-evaluation. For information about parameter tuning, see
“Tunable Parameters” and “Changing the Values of Block Parameters During
Simulation”.

Compatibility Considerations. In R2008a, simulation behavior will differ
if the behavior in a previous release depended on changing any nontunable
variable or parameter during simulation. To regain the previous behavior,
define as tunable any nontunable variable or parameter that you want to
change during simulation for the purpose of affecting simulation immediately.

Detection of Illegal Rate Transitions
Illegal rate transitions between a block and a triggered subsystems or function
call subsystems are now detected when the block is connected to a Unit Delay
or Zero Hold block inside a triggered subsystem.

Compatibility Considerations. In this release, Simulink detects illegal rate
transition errors when the block sample time is different from the triggered
subsystem sample time in those models where the block is connected to a Unit
Delay or Zero Hold block inside the triggered subsystem.

72

Version 7.1 (R2008a) Simulink® Software

Explicit Scaling Required for Fixed-Point Data
In R2008a, when you define a fixed-point data type in a Simulink model, you
must explicitly specify the scaling unless the block supports either integer
scaling mode or best-precision scaling mode. If a block supports neither of
these modes, you cannot define an incomplete fixed-point data type like
fixdt(1,16), which specifies no scaling. See “Specifying a Fixed-Point Data
Type” and “Showing Fixed-Point Details” for information about defining
fixed-point data types.

Compatibility Considerations. In previous releases, you could define
a fixed-point data type that specified no scaling in a block that supported
neither integer scaling mode nor best-precision scaling mode. The Simulink
software posted no warning, and treated fixed-point data type as an integer
data type with the specified word length. For example, fixdt(1,16) was
treated as fixdt(1,16,0).

In R2008a, a fixed-point data type definition that specifies no scaling
generates an error unless the block supports either integer scaling mode
or best-precision scaling mode. If such an error occurs when you compile a
model from an earlier Simulink version, redefine the incomplete fixed-point
data type to be an integer type if nothing more is needed, or to be scaled
appropriately for its value range.

Fixed-Point Details Display Available
The Data Type Assistant can now display the status and details of fixed-point
data types. See “Specifying a Fixed-Point Data Type” and “Showing
Fixed-Point Details” for more information.

More than 2GB of Simulation Data Can be Logged on 64-Bit
Platforms
When you log time, states, final states, and signals on a 64-bit platform, you
can now save more simulation data in the MATLAB base workspace than
was previously possible.

• When you log data using the Structure, Structure with time, or
Timeseries format, you can now save up to 2^48-1 bytes in each field that
contains logged data.

73

Simulink® Release Notes

• When you log data using Array format, you can now save up to 2^48-1
bytes in each array that contains logged data.

Previously the limit was 2^31-1 bytes in each field or array containing logged
data. See “Logging Signals” and “Data Import/Export Pane” for information
about logging data.

74

Version 7.1 (R2008a) Simulink® Software

Order of Simulink and MPT Parameter and Signal Fields
Changed
The order of the fields in the Simulink.Parameter and Simulink.Signal
classes, and in their respective subclasses mpt.Parameter and mpt.Signal,
has changed in R2008a.

The order for Simulink.Parameter (and mpt.Parameter) is now:

Simulink.Parameter (handle)
Value: []

RTWInfo: [1x1 Simulink.ParamRTWInfo]
Description: ''

DataType: 'auto'
Min: -Inf
Max: Inf

DocUnits: ''
Complexity: 'real'
Dimensions: [0 0]

The order for Simulink.Signal (and mpt.Signal) is now:

Simulink.Signal (handle)
RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: ''
DataType: 'auto'

Min: -Inf
Max: Inf

DocUnits: ''
Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'
InitialValue: ''

Loading a model that uses any Simulink.Parameter or mpt.Parameter
objects, and was saved in a release prior to R2008a, may post an Inconsistent
Data warning in the MATLAB Command Window. This message does not
indicate a problem with the model, which need not be changed. Resave the
model in R2008a to update it to use the new parameter class definitions. The
warning will not appear when you reopen the model.

75

Simulink® Release Notes

Range Checking for Complex Numbers
Previous releases did not provide range checking for complex numbers, and
attempting it generated an error. In R2008a, you can specify a minimum
and/or maximum value for a complex number wherever range checking is
available and a complex number is a legal value.

The specified minimum and maximum values apply separately to the real
part and to the imaginary part of the complex number. If the value of either
part of the number is less than the minimum, or greater than the maximum,
the complex number is outside the specified range.

No range checking occurs against any combination of the real and imaginary
parts, such as (sqrt(a^2+b^2)). See “Checking Parameter Values” and
“Checking Signal Ranges” for information about range checking.

Rate Transition Blocks Needed on Virtual Buses
In this release, Simulink never automatically inserts a Rate Transition block
into a virtual bus, even if Automatically handle rate transfer is selected.
Instead, an error is displayed indicating that a Rate Transition block must
be manually inserted.

Compatibility Considerations. Some models that worked in previous
releases, but were dependent on automatic Rate Transition block insertion,
will now report an error and will no longer run. An error will be reported if
all of these apply:

• The Automatically handle rate transfer option is enabled

• The model is multirate

• The model has a virtual bus, all of the elements on the bus have the same
data type, and the sample time changes

• A bus selector block is not present on the virtual bus at a point after the
sample time changes

• The only way to address the rate transition problem is to insert a rate
transition block

76

Version 7.1 (R2008a) Simulink® Software

Sample Times for Virtual Blocks
In models with asynchronous function calls, some virtual blocks now correctly
assign generic sample times instead of triggered sample times.

Compatibility Considerations. The CompiledSampleTime parameter now
reports the compiled sample time as generic sample time (that is, [-1, -inf])
rather than triggered sample time ([-1,-1]) for virtual blocks for which all
of the flowing is true:

• The virtual block is downstream from an asynchronous source

• The virtual block is not inside a triggered subsystem

• The virtual block had a triggered ([-1,-1]) sample time in previous releases

The simulation results, code generation, and sample time colors are not
affected by this change.

Signals Needing Resolution Are Graphically Indicated
In R2008a, the Simulink Editor by default graphically indicates signals that
must resolve to signal objects. For any labeled signal whose Signal name
must resolve to signal object property is enabled, a signal resolution icon
appears to the left of the signal name. The icon looks like this:

A signal resolution icon indicates only that a signal’s Signal name must
resolve to signal object property is enabled. The icon does not indicate
whether the signal is actually resolved, and does not appear on a signal that
is implicitly resolved without its Signal name must resolve to signal
object property being enabled. See “Signal Resolution Indicators” for more
information.

Simulink File Management

Autosave
New Autosave option automatically creates a backup copy of models before
updating or simulating. If you open or load a model which has a more recent

77

Simulink® Release Notes

autosave copy available, a dialog appears where you can choose to overwrite
the original model file with the autosave copy.

You can set the Autosave option in the Simulink Preferences Window. See
Autosave in the Simulink Graphical User Interface documentation.

Old Version Notification
New option to notify when loading a model saved in a previous version of
Simulink software.

You can set this option in the Simulink Preferences Window. See “Simulink
Preferences Window: Main Pane” in the Simulink Graphical User Interface
documentation.

Model Dependencies Tools
Enhanced file dependency analysis now also detects:

• TLC files required by S-functions.

• .fig files created by GUIDE.

• Files referenced by common data loading functions. File names passed to
xlsread, importdata, dlmread, csvread, wk1read, and textread are now
identified, in addition to the existing capability for load, fopen and imread.

See “Scope of Dependency Analysis” in the Using Simulink documentation.

Block Enhancements

New Discrete FIR Filter Block Replaces Weighted Moving
Average Block
The Discrete FIR Filter block in the Discrete library is new for this release.
This block independently filters each channel of the input signal with
the specified digital FIR filter. The Discrete FIR Filter block replaces the
Weighted Moving Average block.

78

Version 7.1 (R2008a) Simulink® Software

Compatibility Considerations. You should replace Weighted Moving
Average blocks in your existing models with the Discrete FIR Filter block. To
do this, run the slupdate command on your models.

Rate Transition Block Enhancements
Support for Rate Transition blocks has been enhanced in the following ways:

• Rate Transition block output port sample time now can be specified as
a multiple of input port sample time, using the new Rate Transition
block parameters Output port sample time options and Sample
time multiple (>0). See the Rate Transition block documentation in the
Simulink Reference for more information.

• In previous releases, auto-insertion of Rate Transition blocks was selected
for a model using the option Automatically handle data transfers
between tasks on the Solver pane of the Configuration Parameters
dialog box. When selected, auto-insertion always ensured data transfer
determinism for periodic tasks.

This release allows you to control the level of data transfer determinism
when auto-insertion of Rate Transition blocks is selected for your model.
The Solver pane option for selecting auto-insertion has been renamed to
Automatically handle rate transition for data transfer. Selecting
auto-insertion now enables a new option, Deterministic data transfer.
Selecting Never (minimum delay) or Whenever possible for this option
can provide reduced latency for models that do not require determinism.
See the “Solver Pane” section in the Simulink Graphical User Interface
documentation for more information.

• Auto-insertion of Rate Transition blocks is now supported for additional
rate transitions, such as sample times with nonzero offset, and between
non-integer-multiple sample times.

Enhanced Lookup Table (n-D) Block
The Lookup Table (n-D) block now supports all data types, complex table
data, and nonscalar inputs. See the Lookup Table (n-D) block documentation
in the Simulink Reference for more information.

79

Simulink® Release Notes

New Accumulator Parameter on Sum Block
The Sum block dialog box displays a new parameter for specifying the data
type of its accumulator. See the Sum block documentation in the Simulink
Reference for more information.

User Interface Enhancements

Simulink Library Browser
A new version of the Simulink Library browser has the following
enhancements:

• Now available on all platforms supported by Simulink software.

• Improved performance for browsing and searching of libraries, by allowing
these operations to proceed without actually loading the libraries.

• Enhanced search finds all blocks and displays search results in a separate
tab.

• New option to display library blocks in a compact grid layout that conserves
screen space.

Simulink Preferences Window
New unified Simulink Preferences window for configuring default settings.
The new Preferences window allows you to configure file change notifications,
autosave options, fonts, display options, and model configuration defaults.

See “Simulink Preferences Window: Main Pane” in the Simulink Graphical
User Interface documentation.

Model Advisor
In R2008a, the Model Advisor tool is enhanced with improved GUI navigation,
check analysis, and reports including:

• Reset option that reverts the status of all checks to Not Run while keeping
the current check selection.

• Model Advisor Result Explorer to make changes to your model.

80

Version 7.1 (R2008a) Simulink® Software

• Input Parameters to provide inputs to checks.

• Check results reported in the same order as the Model Advisor tree.

• The ability to generate reports for any folder.

• Timestamps in reports indicating when checks run at different times.

See “Consulting the Model Advisor” in the Simulink User’s Guide.

Solver Controls
Enhanced controls in the Solver pane of the Configuration Parameters dialog.
The Solver pane of the Configuration Parameters dialog has been changed as
follows:

• The Solver diagnostic controls pane has been removed and two new
panes have been added (Tasking and sample time options, and Zero
crossing options)

• The Automatically handle data transfers between tasks control has
been moved to the Tasking and sample time options pane, and has been
renamed Automatically handle rate transition for data transfer

• The Higher priority value indicates higher task priority control
has been moved to the Tasking and sample time options pane

• The Number of consecutive min step size violations allowed
control has been moved to the Solver options pane, and has been renamed
Consecutive min step size violations allowed

• The States shape preservation control has been added to the Solver
options pane

• The Consecutive zero crossings relative tolerance control has been
moved to the Zero crossing options pane

• The Number of consecutive zero crossings allowed control has been
moved to the Zero crossing options pane

• The Zero crossing control control has been moved to the Zero crossing
options pane

• The Zero crossing location algorithm control has been added to the
Zero crossing options pane

81

Simulink® Release Notes

• The Zero crossing location threshold control has been added to the
Zero crossing options pane

• Options that in previous releases were only visible when enabled are now
always visible. They are grayed when not enabled.

For more information on the Configuration parameters solver pane, see
“Solver Pane”.

Compatibility Considerations. The Solver pane of the Configuration
Parameter dialog has been restructured, and many parameters have moved
or been renamed. Please refer to the list of changes above for information
on specific parameters.

“What’s This?” Context-Sensitive Help Available for
Simulink Configuration Parameters Dialog
R2008a introduces “What’s This?” context-sensitive help for parameters
that appear in the Simulink Configuration Parameters dialog. This feature
provides quick access to a detailed description of the parameters, saving you
the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after a right-click on the Start time parameter in the Solver
pane.

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

82

Version 7.1 (R2008a) Simulink® Software

S-Functions

Simplified Level-2 M-File S-Function Template
New basic version of the Level-2 M-file S-function template
msfuntmpl_basic.m simplifies creating Level-2 M-file S-functions. See
“Writing Level-2 M-File S-Functions” in Writing S-Functions for more
information.

Compatibility Considerations
MATLAB V7.6 (R2008a) on Linus Torvalds’ Linux® platforms is now built
with a compiler that utilizes glibc version 2.3.6. To work with MATLAB V7.6
(R2008a), MEX-file S-functions compiled on a Linux® platform must be rebuilt.

83

Simulink® Release Notes

Version 7.0 (R2007b) Simulink Software
This table summarizes what’s new in V7.0 (R2007b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 84

• “Component-Based Modeling” on page 86

• “Embedded MATLAB Function Blocks” on page 87

• “Data Management” on page 88

• “Configuration Management” on page 91

• “Embedded Software Design” on page 92

• “Block Enhancements” on page 93

• “Usability Enhancements” on page 95

• “S-Functions” on page 95

Simulation Performance

Simulink Accelerator
Simulink® Accelerator™ has been incorporated into Simulink software, and a
new Rapid Accelerator mode has been added for faster simulation through
code generation technology. See “Accelerating Models” in Simulink User’s
Guide.

84

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007b

Version 7.0 (R2007b) Simulink® Software

Note When using From File blocks in Rapid Accelerator mode, the
corresponding MAT file must be in the current directory.

Compatibility Considerations. A license is no longer required to use the
Accelerator or Rapid Accelerator modes.

Simulink Profiler
Simulink Profiler has been incorporated into Simulink software for the
identification of simulation performance bottlenecks. See “Capturing
Performance Data” in Simulink User’s Guide.

Compiler Optimization Level
Simulink Accelerator mode, Rapid Accelerator mode, and model reference
simulation targets can now specify the compiler optimization level used
(choose between minimizing compilation time or simulation time). See
“Customizing the Build Process” in Simulink User’s Guide.

Compatibility Considerations. The new model configuration parameter
Compiler optimization level defaults to Optimizations off (faster
builds). As a result, you might notice shorter build times, but longer
execution times, compared to previous releases. However, any previously
defined custom compiler optimization options using OPT_OPTS will be honored,
and model behavior should be unchanged.

Variable-Step Discrete Solver
Simulink software has been enhanced to no longer take unnecessary time
steps at multiples of the maximum step size when using a variable-step
discrete solver.

Referenced Models Can Execute in Normal or Accelerator Mode
In previous releases, Simulink software executed all referenced models by
generating code for them and executing the generated code. In this release,
Simulink software can execute appropriately configured referenced models
interpretively. Such execution is called Normal mode execution, and execution
via generated code is now called Accelerator mode execution. The technique of

85

Simulink® Release Notes

executing a referenced model via generated code has not changed, but it did
not previously need a separate name because it was the only alternative.

Many restrictions that previously applied to all referenced model execution
now apply only to Accelerator mode execution, and are relaxed in Normal
mode. For example, some Simulink tools that did not work with referenced
models because they are incompatible with generated code can now be used
by executing the referenced model in Normal mode.

Normal mode also has some restrictions that do not apply to Accelerator
mode. For example, at most, one instance of a given model in a referenced
model hierarchy can execute in Normal mode. See “Referencing a Model”
in Simulink User’s Guide for information about using referenced models in
Normal and Accelerator mode.

Accelerator and Model Reference Targets Now Use Standard
Internal Functions
For more consistent simulation results, Simulink Accelerator mode, Rapid
Accelerator mode, and the model reference simulation target now perform
mathematical operations with the same internal functions that MATLAB
and Simulink products use.

Component-Based Modeling

New Instance View Option for the Model Dependency Viewer
The Model Dependency viewer has a new option to display each reference to
a model and indicate whether the reference is simulated in Accelerator or
Normal mode. See “Referencing a Model” and “Using the Model Dependency
Viewer” in Simulink User’s Guide.

Mask Editor Now Requires Java
The Mask Editor now requires that the MATLAB product start with Java
enabled. See “Simulink Mask Editor” in Simulink User’s Guide.

Compatibility Considerations. You can no longer use the Mask Editor if
you start MATLAB with the -nojvm option.

86

Version 7.0 (R2007b) Simulink® Software

Embedded MATLAB Function Blocks

Complex and Fixed-Point Parameters
Embedded MATLAB Function blocks now support complex and fixed-point
parameters.

Support for Algorithms That Span Multiple M-Files
You can now generate embeddable code for external M-functions from
Embedded MATLAB function blocks. This feature allows you to call external
functions from multiple locations in an M-file or model and include these
functions in the generated code.

Compatibility Considerations. In previous releases, Embedded MATLAB
function blocks did not compile external M-functions, but instead dispatched
them to the MATLAB product for execution (after warning). Now, the default
behavior is to compile and generate code for external M-functions called from
Embedded MATLAB function blocks. If you do not want Embedded MATLAB
function blocks to compile external M-functions, you must explicitly declare
them to be extrinsic, as described in “Calling MATLAB Functions” in the
Embedded MATLAB documentation.

Loading R2007b Embedded MATLAB Function Blocks in Earlier
Versions of Simulink Software
If you save Embedded MATLAB Function blocks in R2007b, you will not be
able to load the corresponding model in earlier versions of Simulink software.
To work around this issue, save your model in the earlier version before
loading it, as follows:

1 In the Simulink Editor, select File > Save As.

2 In the Save as type field, select the version in which you want to load
the model.

For example, if you want to load the model in Simulink R2007a, select
Simulink 6.6/R2007a Models (*.mdl).

87

Simulink® Release Notes

Data Management

New Diagnostic for Continuous Sample Time on
Non-Floating-Point Signals
A new diagnostic detects continuous sample time on non-floating-point
signals.

New Standardized User Interface for Specifying Data Types
This release introduces a new standardized user interface, the Data Type
Assistant, for specifying data types associated with Simulink blocks and data
objects, as well as Stateflow data. See “Using the Data Type Assistant” in
Simulink User’s Guide for more information.

The Data Type Assistant appears on the dialogs of the following Simulink
blocks:

• Abs

• Constant

• Data Store Memory

• Data Type Conversion

• Difference

• Discrete Derivative

• Discrete-Time Integrator

• Dot Product

• Embedded MATLAB Function (Ports and Data Manager dialog)

• Gain

• Inport

• Interpolation Using Prelookup

• Logical Operator

• Lookup Table

• Lookup Table (2-D)

88

Version 7.0 (R2007b) Simulink® Software

• Lookup Table Dynamic

• Math Function

• MinMax

• Multiport Switch

• Outport

• Prelookup

• Product, Divide, Product of Elements

• Relational Operator

• Relay

• Repeating Sequence Interpolated

• Repeating Sequence Stair

• Saturation

• Saturation Dynamic

• Signal Specification

• Sum, Add, Subtract, Sum of Elements

• Switch

• Weighted Moving Average (obsolete — replaced by the Discrete FIR Filter
block)

The Data Type Assistant appears on the dialogs of the following Simulink
data objects:

• Simulink.BusElement

• Simulink.Parameter

• Simulink.Signal

• Simulink.StructElement

89

Simulink® Release Notes

New Block Parameters for Specifying Minimum and Maximum
Values
The following new block parameters are available for specifying the minimum
and maximum values of signals and other block parameters.

• Output minimum, Minimum

• Output maximum, Maximum

• Parameter minimum

• Parameter maximum

These new parameters selectively appear on the dialogs of the following
Simulink blocks:

• Abs

• Constant

• Data Store Memory

• Data Type Conversion

• Difference

• Discrete Derivative

• Discrete-Time Integrator

• Gain

• Inport

• Interpolation Using Prelookup

• Lookup Table

• Lookup Table (2-D)

• Math Function

• MinMax

• Multiport Switch

• Outport

• Product, Divide, Product of Elements

90

Version 7.0 (R2007b) Simulink® Software

• Relay

• Repeating Sequence Interpolated

• Repeating Sequence Stair

• Saturation

• Saturation Dynamic

• Signal Specification

• Sum, Add, Subtract, Sum of Elements

• Switch

New Range Checking of Block Parameters
In this release, Simulink software performs range checking of parameters
associated with blocks that specify minimum and maximum values (see “New
Block Parameters for Specifying Minimum and Maximum Values” on page
90). Simulink software alerts you when values of block parameters lie outside
a range that corresponds to its specified minimum and maximum values and
data type. See “Checking Parameter Values” in Simulink User’s Guide for
more information.

New Diagnostic for Checking Signal Ranges During Simulation
In the Configuration Parameters dialog, the Diagnostics > Data Validity
pane contains a new diagnostic, Simulation range checking, which alerts
you during simulation when blocks output signals that exceed specified
minimum or maximum values (see “New Block Parameters for Specifying
Minimum and Maximum Values” on page 90). For more information about
using this diagnostic, see “Checking Signal Ranges” in Simulink User’s Guide.

Configuration Management

Disabled Library Link Management
The following new features help manage disabled library links and protect
against accidental loss of work:

91

Simulink® Release Notes

• “Disabled Link” appears in the title bar of a Model Editor window that
displays a subsystem connected to a library by a disabled link.

• ToolTips for library-linked blocks include the link status as well as the
destination block for the link.

• New diagnostics warn when saving a model that contains disabled or
parameterized library links.

• New Model Advisor checks let you search for disabled or parameterized
library links in a model.

See “Disabling Links to Library Blocks” in Simulink User’s Guide for more
information.

Model Dependencies Tools
The model dependencies manifest tools have these new capabilities:

• Enhanced analysis to detect file dependencies from Stateflow transitions,
Embedded MATLAB functions, and requirements documents. See “Scope
of Dependency Analysis” in Simulink User’s Guide.

• Model dependencies tools now save user manifest edits for reuse the next
time a manifest is generated. See “Editing Manifests” in Simulink User’s
Guide.

Embedded Software Design

Legacy Code Tool Enhancement
The Legacy Code Tool has been enhanced to allow the use of void* and void**
to declare variables that represent memory allocated for specific instances of
items such as file descriptors, device drivers, and memory managed externally.

For more information, see:

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions

• legacy_code function documentation in the Simulink Reference

92

Version 7.0 (R2007b) Simulink® Software

Block Enhancements

Product Block Reorders Inputs Internally
In previous releases, a Product block whose

• Number of inputs parameter begins with a divide character (/)

• Multiplication parameter specifies Element-wise(.*)

computes the reciprocal of its first input before multiplying or dividing by
subsequent inputs. For example, if a Product block specifies division for its
first input, u1, and multiplication for its second input, u2, previous versions of
Simulink software compute

(1 / u1) * u2

In this release, the Product block internally reorders its first two inputs if
particular conditions apply, such that Simulink software now computes

u2 / u1

See the Product block documentation in the Simulink Reference for more
information.

Block Data Tips Now Work on All Platforms
In previous releases, block data tips worked only on Microsoft Windows
platforms. In this release, the data tips work on all platforms. Also, the data
tip for a library link, even if disabled, now includes the name of the library
block it references.

Enhanced Data Type Support for Blocks
The following blocks now allow you to specify the data type of their outputs:

• Abs

• Multiport Switch

• Saturation

• Saturation Dynamic

93

Simulink® Release Notes

• Switch

The following blocks now support single-precision floating-point inputs,
outputs, and parameter values:

• Discrete Filter

• Discrete State-Space

• Discrete Transfer Fcn

New Simulink Data Class Block Object Properties
The following properties have been added to the Simulink.BlockData class:

• AliasedThroughDataType

• AliasedThroughDataTypeID

New Break Link Options for save_system Command
The save_system command’s BreakLink option has been replaced by two
options: BreakAllLinks and BreakUserLinks. The first option duplicates the
behavior of the obsolete BreakLink option, i.e., it replaces all library links,
including links to Simulink block libraries with copies of the referenced
library blocks. The BreakUserLinks option replaces only links to user-defined
libraries.

Compatibility Considerations. The save_system command continues to
honor the BreakLink option but displays a warning message at the MATLAB
command line that the option is deprecated.

Simulink Software Checks Data Type of the Initial Condition
Signal of the Integrator Block
When the output port of the Constant or IC block is connected to the Initial
Condition port of the Integrator block, Simulink software now compares the
data type of the Initial Condition input signal of the Integrator block with
the Constant value parameter or Initial value parameter of the Constant
block or IC block, respectively.

94

Version 7.0 (R2007b) Simulink® Software

Compatibility Considerations. If the data type for the output port of the
Constant or IC blocks does not match the data type of the Initial Condition
input signal for the Integrator block, Simulink software returns an error
at compile time.

Usability Enhancements

Model Advisor
Model Advisor has been enhanced to navigate checks, display status, and
report results. Also, this release contains a new “Model Advisor Checks”
reference.

Alignment Commands
This release contains new block alignment, distribution, and resize commands
to align groups of blocks along their edges, equalize interblock spacing,
and resize blocks to be all the same size. See “Aligning, Distributing, and
Resizing Groups of Blocks Automatically” in Simulink User’s Guide for more
information.

S-Functions

New S-Function APIs to Support Singleton Dimension Handling
The following functions have been added:

• ssPruneNDMatrixSingletonDims

• ssGetInputPortDimensionSize

• ssGetOutputPortDimensionSize

See “SimStruct Functions — Alphabetical List” in Writing S-Functions for
more information.

95

Simulink® Release Notes

New Level-2 M-File S-Function Example
This release includes a new Level-2 M-file S-function example in
sfundemos.mdl. The Simulink model msfcndemo_varpulse.mdl uses the
S-function msfcn_varpulse.m to create a variable-width pulse generator.

96

Version 6.6.1 (R2007a+) Simulink® Software

Version 6.6.1 (R2007a+) Simulink Software
This table summarizes what’s new in V6.6.1 (R2007a+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
Includes fixes

No

97

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a%2B

Simulink® Release Notes

Version 6.6 (R2007a) Simulink Software
This table summarizes what’s new in Version 6.6 (R2007a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes
Summary

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Multidimensional Signals” on page 99

• “New Block Parameters” on page 103

• “GNU Compiler Upgrade” on page 103

• “Changes to Concatenate Block” on page 103

• “Changes to Assignment Block” on page 104

• “Changes to Selector Block” on page 105

• “Improved Model Advisor Navigation and Display” on page 106

• “Change to Simulink.ModelAdvisor.getModelAdvisor Method” on page 106

• “New Simulink Blocks” on page 107

• “Change to Level-2 M-File S-Function Block” on page 107

• “Model Dependency Analysis” on page 107

• “Model File Monitoring” on page 108

• “Legacy Code Tool Enhancements” on page 108

• “Continuous State Names” on page 109

• “Changes to Embedded MATLAB Function Block” on page 110

• “Referenced Models Support Non-Zero Start Time” on page 114

• “New Functions Copy a Model to a Subsystem or Subsystem to Model”
on page 114

98

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2007a

Version 6.6 (R2007a) Simulink® Software

• “New Functions Empty a Model or Subsystem” on page 115

• “Default for Signal Resolution Parameter Has Changed” on page 116

• “Referencing Configuration Sets” on page 117

• “New Block, Model Advisor Check, and Utility Function for Bus to Vector
Conversion” on page 117

• “Enhanced Support for Tunable Parameters in Expressions” on page 118

• “New Loss of Tunability Diagnostic” on page 119

• “Port Parameter Evaluation Has Changed” on page 119

• “Data Type Objects Can Be Passed Via Mask Parameters” on page 120

• “Expanded Options for Displaying Subsystem Port Labels” on page 120

• “Model Explorer Customization Option Displays Properties of Selected
Object” on page 121

• “Change to PaperPositionMode Parameter” on page 121

• “New Simulink.Bus.objectToCell Function” on page 121

• “Simulink.Bus.save Function Enhanced To Allow Suppression of Bus
Object Creation” on page 121

• “Change in Version 6.5 (R2006b) Introduced Incompatibility” on page 122

• “Nonverbose Output During Code Generation” on page 122

Multidimensional Signals
This release includes support for multidimensional signals, including:

• Sourcing of multidimensional signals

• Logging or displaying of multidimensional signals

• Large-scale modeling applications, such as those from model referencing

• Buses and nonvirtual buses

• Code generation with Real-Time Workshop software

• S-functions, including Level-2 M-File S-functions

• Stateflow charts

99

Simulink® Release Notes

For further details, see:

• “Multidimensional Signals in Simulink Blocks” on page 100

• “Multidimensional Signals in S-Functions” on page 102

Simulink software supports signals with up to 32 dimensions. Do not use
signals with more than 32 dimensions.

Multidimensional Signals in Simulink Blocks
The following blocks were updated to support multidimensional signals. See
“Signal Dimensions” in the Simulink documentation for further details.

• Abs

• Assignment

• Bitwise Operator

• Bus Assignment

• Bus Creator

• Bus Selector

• Compare to Constant

• Compare to Zero

• Complex to Magnitude-Angle

• Complex to Real-Imag

• Concatenate

• Constant

• Data Store Memory

• Data Store Read

• Data Store Write

• Data Type Conversion

• Embedded MATLAB Function

• Environment Controller

100

Version 6.6 (R2007a) Simulink® Software

• From

• From Workspace

• Gain (only if theMultiplication parameter specifies Element-wise(K*u))

• Goto

• Ground

• IC

• Inport

• Level-2 M-File S-Function

• Logical Operator

• Magnitude-Angle to Complex

• Manual Switch

• Math Function (no multidimensional signal support for the transpose
and hermitian functions)

• Memory

• Merge

• MinMax

• Model

• Multiport Switch

• Outport

• Product, Product of Elements — only if the Multiplication parameter
specifies Element-wise

• Probe

• Random Number

• Rate Transition

• Real-Imag to Complex

• Relational Operator

• Reshape

101

Simulink® Release Notes

• Scope, Floating Scope

• Selector

• S-Function

• Signal Conversion

• Signal Specification

• Slider Gain

• Squeeze

• Subsystem, Atomic Subsystem, CodeReuse Subsystem

• Add, Subtract, Sum, Sum of Elements — along specified dimension

• Switch

• Terminator

• To Workspace

• Trigonometric Function

• Unary Minus

• Uniform Random Number

• Unit Delay

• Width

The Block Support Table does not list which blocks support multidimensional
signals. To see if a block supports multidimensional signals, check for the
entry Multidimensionalized in the Characteristics table of a block.

Multidimensional Signals in S-Functions
To use multidimensional signals in S-functions, you must use the new
SimStruct function, ssAllowSignalsWithMoreThan2D.

Multidimensional Signals in Level-2 M-File S-Functions
To use multidimensional signals in Level-2 M-file S-functions, you must set the
new Simulink.MSFcnRunTimeBlock property, AllowSignalsWithMoreThan2D.

102

Version 6.6 (R2007a) Simulink® Software

New Block Parameters
This release introduces the following common block parameters.

• PreCopyFcn: Allows you to assign a function to call before the block is
copied. See “Block Callback Parameters” in the Simulinkdocumentation for
details.

• PreDeleteFcn: Allows you to assign a function to call before the block is
deleted. See “Block Callback Parameters” in the Simulinkdocumentation
for details.

• StaticLinkStatus: Allows you to obtain the link status of a block without
updating out-of-date reference blocks See “Determining Link Status” in the
Simulinkdocumentation for details.

GNU Compiler Upgrade
This release upgrades the GNU® compiler to GCC 4.0.3 on Mac® platforms
and GCC 4.1.1 on Linux platforms. The Fortran runtime libraries for the
previous GCC 3.x versions are no longer included with MATLAB.

Compatibility Considerations
C, C++, or Fortran MEX-files built with the previous 3.x version of the GCC
compiler are not guaranteed to load in this release. Rebuild the source code
for these S-functions using the new version of the GCC compiler.

Changes to Concatenate Block
This release includes the following changes to the Concatenate block:

• Its Mode parameter provides two settings, namely, Vector and
Multidimensional array.

• Its parameter dialog box contains a new option, Concatenate dimension,
specifying the output dimension along which to concatenate the input
arrays.

• The block displays a new icon when its Mode parameter is set to
Multidimensional array.

103

Simulink® Release Notes

This release updates Concatenate blocks when loading models created in
previous releases.

Changes to Assignment Block
This release includes the following changes to the Assignment block:

• Enter the number of dimensions in the Number of output dimensions
parameter, then configure the input and output with the Index Option,
Index, and Output Size parameters.

• The parameter dialog box has the following new parameters:

- Number of output dimensions

- Index Option

- Index

- Output Size

• The Initialize output (Y) parameter replaces Output (Y) and has
renamed options.

• The Action if any output element is not assigned parameter replaces
Diagnostic if not all required dimensions populated.

• The block displays a new icon depending on the value of Number of input
dimensions and the Index Option settings.

The following parameters are obsolete:

• Input type

• Use index as start value

• Source of element indices

• Elements

• Source of row indices

• Rows

• Source of column indices

• Columns

104

Version 6.6 (R2007a) Simulink® Software

• Output dimensions

This release updates Assignment blocks when loading models created in
previous releases.

Changes to Selector Block
This release includes the following changes to the Selector block:

• Enter the number of dimensions in the Number of input dimensions
parameter, then configure the input and output with the Index Option,
Index, and Output Size parameters.

• The parameter dialog box has the following new parameters:

- Number of input dimensions

- Index Option

- Index

- Output Size

• The behavior of the Sample time parameter has changed. See the Selector
block Sample time parameter for details.

• The block displays a new icon depending on the value of Number of input
dimensions and the Index Option settings.

The following parameters are obsolete:

• Input type

• Use index as starting value

• Source of row indices

• Rows

• Source of column indices

• Columns

• Output port dimensions

105

Simulink® Release Notes

This release updates Selector blocks when loading models created in previous
releases.

Improved Model Advisor Navigation and Display
This release improves the Model Advisor graphical user interface (GUI)
for navigating lists of checks and viewing the status of completed checks.
While Model Advisor functionality and content are largely unchanged from
R2006b, the Model Advisor checks display and are navigated differently than
in previous versions, and the generated Model Advisor report, if requested,
displays in a MATLAB web browser window that is separate from the Model
Advisor GUI.

To exercise the new features, open Model Advisor for a model (for example,
enter modeladvisor('vdp') at the MATLAB command line) and then follow
the instructions in the Model Advisor window. For more information about
Model Advisor navigation and display, see “Consulting the Model Advisor” in
the Simulink documentation.

Change to Simulink.ModelAdvisor.getModelAdvisor
Method
In this release, when using the getModelAdvisor method defined by the
Simulink.ModelAdvisor class to change Model Advisor working scope to
a different model, you must either close the previous model or invoke the
getModelAdvisor method with 'new' as the second argument. For example,
if you previously set scope to modelX with

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');

and you want to change scope to modelY, you must either close modelX or use

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY', 'new');

If you try to change scope between models without the 'new' argument, an
error message is displayed.

Compatibility Considerations
In previous releases, you could change Model Advisor working scope without
closing the current session. This is no longer allowed.

106

Version 6.6 (R2007a) Simulink® Software

If your code contains a code pattern such as the following,

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');
...
Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY');

you must add the 'new' argument to the second and subsequent invocations
of getModeladvisor. For example:

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');
...
Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY', 'new');

Alternatively, you can close ModelX before issuing
Simulink.ModelAdvisor.getModelAdvisor('modelY').

New Simulink Blocks
This release introduces the following blocks:

• The Permute Dimensions block enables you to rearrange the dimensions of
a multidimensional signal.

• The Squeeze block enables you to remove singleton dimensions from a
multidimensional signal.

Change to Level-2 M-File S-Function Block
If a model includes a Level-2 M-File S-Function block, and an error occurs
in the S-function, the Level-2 M-File S-Function block will display M-file
stack trace information for the error in a dialog box. Click OK to remove the
dialog box. In previous releases, this block did not display the stack trace
information.

Model Dependency Analysis
The model dependencies manifest tools identify files required by your model.
You can list required files in a ’manifest’ file, package the model with required
files into a ZIP file, or compare two file manifests.

See “Model Dependencies” for more information.

107

Simulink® Release Notes

Model File Monitoring
• Warnings if a model file is changed on disk by another user or application
while the model is loaded in Simulink software. (see Model File Change
Notification in “Managing Model Versions”).

• Warning to notify the user if multiple models or libraries with the same
name exist, as Simulink software may not be using the one the user
expects. (see “Shadowed Files”).

Legacy Code Tool Enhancements

• New fields in the Legacy Code Tool data structure:
InitializeConditionsFcnSpec and SampleTime.
InitializeConditionsFcnSpec defines a function specification for a
reentrant function that the S-function calls to initialize and reset states.
SampleTime allows you to specify whether sample time is inherited from
the source block, represented as a tunable parameter, or fixed.

• Support for state (persistent memory) arguments in registered function
specifications.

• Support for complex numbers specified for input, output, and parameter
arguments in function specifications. This support is limited to use with
Simulink built-in data types.

• Support for multidimensional arrays specified for input and output
arguments in function specifications. Previously, multidimensional array
support applied to parameters only.

• Ability to apply the size function to any dimension of function input
data—input, output, parameter, or state. The data type of the size
function’s return value can be any type except complex, bus, or fixed-point.

• A new Legacy Code Tool option, 'backward_compatibility', which you
can specify with the legacy_code function. This option enables Legacy
Code Tool syntax, as made available from MATLAB Central in releases
prior to R2006b, for a given MATLAB session.

• The following new demos:

sldemo_lct_sampletime
sldemo_lct_work
sldemo_lct_cplxgain

108

Version 6.6 (R2007a) Simulink® Software

sldemo_lct_ndarray

For more information, see

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions documentation

• “Automating the Generation of Files for Fully Inlined S-Functions Using
Legacy Code Tool” in the Real-Time Workshop documentation

• legacy_code function reference page

Compatibility Considerations
If you are using a version of the Legacy Code Tool that was accessible from
MATLAB Central before R2006b, the syntax for using the tool differs from the
syntax currently supported by Simulink software. To continue using the old
style syntax, for example, legacy_code_initialize.m, issue the following
call to legacy_code for a given MATLAB session:

legacy_code('backward_compatibility');

Continuous State Names
State names can now be assigned in those blocks that employ continuous
states. The names are assigned with the ContinuousStateAttributes
“Block-Specific Parameters” parameter, or in the Blocks Parameter dialog box.

The following blocks support continuous state names:

• Integrator

• State-Space

• Transfer Fcn

• Variable Transport Delay

• Zero-Pole

Logging of continuous states is illustrated in the sldemo_hydrod demo.

109

Simulink® Release Notes

Changes to Embedded MATLAB Function Block
This release introduces the following changes to the Embedded MATLAB
Function block:

• “New Function Checks M-Code for Compliance with Embedded MATLAB
Subset” on page 110

• “Support for Multidimensional Arrays” on page 110

• “Support for Function Handles” on page 111

• “Enhanced Support for Frames” on page 111

• “New Embedded MATLAB Runtime Library Functions” on page 111

• “Using & and | Operators in Embedded MATLAB Function Blocks” on
page 113

• “Calling get Function from Embedded MATLAB Function Blocks” on page
114

• “Documentation on Embedded MATLAB Subset has Moved” on page 114

New Function Checks M-Code for Compliance with Embedded
MATLAB Subset
Embedded MATLAB function blocks introduce a new function, Embedded
MATLAB MEX (emlmex), that checks M-code for compliance with the syntax
and semantics of the Embedded MATLAB subset. You can add Embedded
MATLAB-compliant code to Embedded MATLAB Function blocks and Truth
Table blocks in Simulink models. For more information, see “Working with
Embedded MATLAB MEX” in the Embedded MATLAB documentation.

Support for Multidimensional Arrays
Embedded MATLAB Function blocks now supports multidimensional signals
and parameter data, where the number of dimensions can be greater than 2.
This feature is fully integrated with support for multidimensional signals in
Simulink software. Supported functions in the “Embedded MATLAB Function
Library Reference” have been enhanced to handle multidimensional data.

110

Version 6.6 (R2007a) Simulink® Software

Support for Function Handles
Embedded MATLAB Function blocks now support function handles for
invoking functions indirectly and parameterizing operations that you repeat
frequently in your code. For more information, see the section on using
function handles in “Working with the Embedded MATLAB Subset” in the
Embedded MATLAB documentation.

Enhanced Support for Frames
Embedded MATLAB Function blocks can now input and output frame-based
signals directly in Simulink models. You no longer need to attach Frame
Conversion blocks to inputs and outputs to achieve this functionality. See
“Working with Frame-Based Signals” in the Simulink documentation.

New Embedded MATLAB Runtime Library Functions
Embedded MATLAB Function blocks provide 31 new runtime library
functions in the following categories:

• “Casting Functions” on page 112

• “Derivative and Integral Functions” on page 112

• “Discrete Math Functions” on page 112

• “Exponential Functions” on page 112

• “Filtering and Convolution Functions” on page 112

• “Logical Operator Functions” on page 112

• “Matrix and Array Functions” on page 112

• “Polynomial Functions” on page 113

• “Set Functions” on page 113

• “Specialized Math” on page 113

• “Statistical Functions” on page 113

See “Embedded MATLAB Function Library Reference” for a list of all
supported functions.

111

Simulink® Release Notes

Casting Functions.

• typecast

Derivative and Integral Functions.

• cumtrapz

• trapz

Discrete Math Functions.

• nchoosek

Exponential Functions.

• expm

Filtering and Convolution Functions.

• conv2

• deconv

• detrend

• filter2

Logical Operator Functions.

• xor

Matrix and Array Functions.

• cat

• flipdim

• normest

• rcond

• sortrows

112

Version 6.6 (R2007a) Simulink® Software

Polynomial Functions.

• poly

Set Functions.

• issorted

Specialized Math.

• beta

• betainc

• betaln

• ellipke

• erf

• erfc

• erfcinv

• erfcx

• erfinv

• expint

• gamma

• gammainc

• gammaln

Statistical Functions.

• mode

Using & and | Operators in Embedded MATLAB Function Blocks
Embedded MATLAB Function blocks no longer support & and | operators in
if and while conditional statements.

113

Simulink® Release Notes

Compatibility Considerations. In prior releases, these operators compiled
without error, but their short-circuiting behavior was not implemented
correctly. Substitute && and || operators instead.

Calling get Function from Embedded MATLAB Function Blocks
Embedded MATLAB Function blocks now support the Fixed-Point Toolbox™
get function for returning the properties of fi objects.

Compatibility Considerations. To get properties of non-fixed-point objects
in Embedded MATLAB Function blocks, you must first declare get to be an
extrinsic function; otherwise, your code will error. For more information refer
to “Calling MATLAB Functions” in the Embedded MATLAB documentation.

Documentation on Embedded MATLAB Subset has Moved
Documentation on the Embedded MATLAB subset and its syntax, semantics,
and supported functions has moved out of the Simulink Reference. See
Embedded MATLAB™ User’s Guide for the newEmbedded MATLAB
documentation.

Referenced Models Support Non-Zero Start Time
The simulation start time of all models in a model reference hierarchy was
previously required to be 0. Now the simulation start time can be nonzero.
The start time of all models in a model reference hierarchy must be the same.
See “Referencing a Model” and “Specifying a Simulation Start and Stop Time”
for information about these capabilities. See “Referencing Configuration Sets”
on page 117 for information about a convenient way to give all models in a
hierarchy the same configuration parameters, including simulation start time.

New Functions Copy a Model to a Subsystem or
Subsystem to Model
Two new functions exist that you can use to copy contents between a block
diagram and a subsystem.

Simulink.BlockDiagram.copyContentsToSubSystem
Copies the contents of a block diagram to an empty subsystem.

114

Version 6.6 (R2007a) Simulink® Software

Simulink.SubSystem.copyContentsToBlockDiagram
Copies the contents of a subsystem to an empty block diagram.

For details, see the reference documentation for each function.

New Functions Empty a Model or Subsystem
Two new functions exist that you can use to delete the contents of a block
diagram or subsystem.

Simulink.BlockDiagram.deleteContents
Deletes the contents of a block diagram.

Simulink.SubSystem.deleteContents
Deletes the contents of a subsystem.

For details, see the reference documentation for each function.

115

Simulink® Release Notes

Default for Signal Resolution Parameter Has Changed
In the Configuration Parameters dialog, Diagnostics > Data Validity pane,
the default setting for Signal resolution is now Explicit only. Previously,
the default was Explicit and warn implicit. Equivalently, the default value
of the SignalResolutionControl parameter is now UseLocalSettings
(previously TryResolveAllWithWarnings). See “Diagnostics Pane: Data
Validity” for more information.

Compatibility Considerations
Due to this change, labeling a signal is no longer enough to cause it to resolve
by default to a signal object. You must also do one of the following:

• In the signal’s Signal Properties dialog, select Signal name must resolve
to Simulink data object and specify a Simulink.Signal object in the
Signal name field. Simulink software then resolves that signal to that
signal object.

• In the Configuration Parameters dialog, set Diagnostics > Data Validity
> Signal resolution to Explicit and warn implicit (to post warnings)
or Explicit and implicit (to suppress warnings). Simulink software
then resolves all labeled signals to signal objects by matching their names,
posting a warning of each resolution if so directed.

Models built in R2007a will default to Explicit only. Models created in
previous versions will retain the Signal resolution value with which they
were saved, and will run as they did before. New models may therefore
behave differently from existing models that retain the previous default
behavior. To specify the previous default behavior in a new model, change
Signal resolution to Explicit and warn implicit.

Conversion Function. The MathWorks discourages using implicit signal
resolution except for fast prototyping, because implicit resolution slows
performance, complicates model validation, and can have nondeterministic
effects. Simulink software provides the disableimplicitsignalresolution
function, which you can use to change settings throughout a model so
that it does not use implicit signal resolution. See the function’s reference
documentation, or type:

help disableimplicitsignalresolution

116

Version 6.6 (R2007a) Simulink® Software

in the MATLAB Command Window.

Referencing Configuration Sets
This release provides configuration references (Simulink.ConfigSetRef
class), which you can use to link multiple models to a configuration set stored
on the base workspace. All of those models then share the same configuration
set, and therefore have the same configuration parameter values. Changing a
parameter value in a shared configuration set changes that value for every
model that uses the set. With configuration references, you can:

• Assign the same configuration set to any number of models

• Replace the configuration sets of any number of models without changing
the model files

• Use different configuration sets for a referenced model in different contexts
without changing the model file

See “Configuration Sets” and “Referencing Configuration Sets” for more
information.

Compatibility Considerations
You cannot change configuration parameter values by operating directly on a
configuration reference as you can a configuration set. Instead, you must use
the configuration reference to retrieve the configuration set and operate on
the set. If you reconfigure a model to access configuration parameters using a
configuration reference, you must update any scripts that change parameter
values to incorporate the extra step of obtaining the configuration set from
the reference before changing the values. See “Creating a Freestanding
Configuration Set” for details.

New Block, Model Advisor Check, and Utility
Function for Bus to Vector Conversion
When the diagnostic Configuration Parameters > Connectivity > Buses
> Bus signal treated as vector is disabled or none, you can input a
homogeneous virtual bus to many blocks that accept vectors but are not
formally defined as accepting buses. Simulink software transparently
converts the bus to a vector, allowing the block to accept the bus.

117

Simulink® Release Notes

However, The MathWorks discourages intermixing buses and vectors,
because such mixtures cause ambiguities that preclude strong type checking.
The practice may become unsupported at some future time, and should not
be used in new applications.

Simulink software provides diagnostics that report cases where buses are
mixed with vectors, and includes capabilities that you can use to upgrade a
model to eliminate such mixtures, as described in the following sections of
the Simulink documentation:

• “Using Composite Signals” — A new chapter in R2007a that describes the
specification and use of composite signals.

• “Avoiding Mux/Bus Mixtures” — Ambiguities that arise when composite
signal types are intermixed, and the tools available for eliminating such
mixtures.

• “Using Diagnostics for Mux/Bus Mixtures” — Two diagnostic options for
detecting mixed composite signals: “Mux blocks used to create bus signals”
and “Bus signal treated as vector”.

• “Using the Model Advisor for Mux/Bus Mixtures” — Model Advisor checks
that detect mixed composite signals and recommend alternatives.

• Bus to Vector — A block that you can insert into a bus used implicitly as a
vector to explicitly convert the bus to a vector.

• Simulink.BlockDiagram.addBusToVector — A function that creates a
report of every bus used implicitly as a vector, and optionally inserts a
Bus to Vector block into every such bus, replacing the implicit use with
an explicit conversion.

Enhanced Support for Tunable Parameters in
Expressions
Expressions that index into tunable parameters, such as P(1)+P(2)/P(i),
retain their tunability in generated code, including simulation code that is
generated for a referenced model. Both the indexed parameter and the index
itself can be tuned.

Parameter expressions of the form P(i) retain their tunability if all of the
following are true:

118

Version 6.6 (R2007a) Simulink® Software

• The index i is a constant or variable of double datatype

• P is a 1D array, or a 2D array with one row or one column, of double
datatype

• P does not resolve to a mask parameter, but to a variable in the model or
the base workspace

New Loss of Tunability Diagnostic
Previously, any loss of tunability generated a warning. In R2007a, you can
use the Loss of Tunability diagnostic to control whether loss of tunability is
ignored or generates a warning or error. See “Detect loss of tunability” for
details.

Port Parameter Evaluation Has Changed
Previously, resolution of port parameters of a masked subsystem began within
the subsystem, which could violate the integrity of the mask. For example, if
a subsystem mask defines parameter A, and a port of the subsystem uses A
to set some port attribute, resolving A by starting within the masked block
makes A externally visible, though it should be visible only within the mask.

To fix this problem, in R2007a masked subsystem port parameter resolution
starts in the containing system rather than within the masked subsystem,
then proceeds hierarchically upward as it did before. This change preserves
the integrity of the masked subsystem, but can change model behavior if
any subsystem port previously depended for resolution on a variable defined
within the mask.

Compatibility Considerations
A model whose ports did not reference variables defined within a mask are
unaffected. A model that resolved any port parameter by accessing a variable
within a masked block may behave differently or become vulnerable to future
changes in behavior, as follows:

• If the port parameter’s value cannot be evaluated, because the evaluation
would require access to a variable defined only within the mask, an error
occurs.

119

Simulink® Release Notes

• If an appropriate variable exists outside the mask but has a different value
than the corresponding variable within the mask, no error occurs, but
model behavior may change.

• If an appropriate variable exists and has the same value inside and outside
the mask, no behavioral change occurs, but later changes to the variable
outside the mask may have unexpected effects.

To ensure correct results, change the model as needed so that any port
parameter that previously depended on any variables defined within a mask
give the intended results using the new resolution search path.

Data Type Objects Can Be Passed Via Mask
Parameters
Previously, if a masked subsystem contained a block that needed to specify a
data type using a data type object, the block could access the object only in the
base workspace. The data type object could not be passed into the subsystem
through a mask parameter. Parameterizing data types used by blocks under
a mask was therefore not possible.

To support parameterized data types inside masked subsystems, you can now
use a mask parameter to pass a data type object into a subsystem Blocks in
the subsystem can then use the object to specify data types under the mask.

Expanded Options for Displaying Subsystem Port
Labels
This release provides an expanded set of options for displaying port labels on
a subsystem block. The options include displaying:

• The label on the corresponding port block

• The name of the corresponding port block

• The name of the signal connected to the corresponding block

See the documentation for the Show Port Labels option on the Subsystem
block’s parameter dialog box for more information.

120

Version 6.6 (R2007a) Simulink® Software

Model Explorer Customization Option Displays
Properties of Selected Object
This release introduces a Selection Properties node to the Model Explorer’s
Customize Contents pane. The node allows you to customize the Model
Explorer’s Contents pane to display only the properties of the currently
selected object. See “Customize Contents Pane” for more information.

Change to PaperPositionMode Parameter
In this release, when exporting a diagram as a graphic with the
PaperPositionMode model parameter set to auto, Simulink software sizes the
exported graphic to be the same size as the diagram’s image on the screen
when viewed at normal size. When PaperPositionMode is set to manual,
Simulink software sizes the exported image to have the height and width
specified by the model’s PaperPosition parameter.

Compatibility Considerations
In previous releases, a model’s PaperPosition parameter determined
the size of the exported graphic regardless of the setting of the model’s
PaperPositionMode parameter. To reproduce the behavior of previous
releases, set the PaperPositionMode parameter to manual.

New Simulink.Bus.objectToCell Function
A new function, Simulink.Bus.objectToCell, is available for converting bus
objects to a cell array that contains bus information. For details, see the
description of Simulink.Bus.objectToCell.

Simulink.Bus.save Function Enhanced To Allow
Suppression of Bus Object Creation
The Simulink.Bus.save function has been enhanced such that when using
the 'cell' format you have the option of suppressing the creation of bus
objects when the saved M-file executes. To suppress bus object creation,
specify the optional argument 'false' when you execute the saved M-file.

For more detail, see the description of Simulink.Bus.save.

121

Simulink® Release Notes

Change in Version 6.5 (R2006b) Introduced
Incompatibility
A change introduced in Version 6.5 (R2006b) introduces an incompatibility
between this release and releases preceding Version 6.5 (R2006b). See
“Attempting to Reference a Symbol in an Uninitialized Mask Workspace
Generates an Error” on page 129 for more information.

Nonverbose Output During Code Generation
Simulink Acceleratornow defaults to nonverbose output when generating
code. A new parameter, AccelVerboseBuild, has been added to control how
much information is displayed. See “Customizing the Build Process” for more
information.

122

Version 6.5 (R2006b) Simulink® Software

Version 6.5 (R2006b) Simulink Software
This table summarizes what’s new in Version 6.5 (R2006b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes
Summary

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Model Dependency Viewer” on page 124

• “Enhanced Lookup Table Blocks” on page 124

• “Legacy Code Tool” on page 124

• “Simulink Software Now Uses Internal MATLAB Functions for Math
Operations” on page 125

• “Enhanced Integer Support in Math Function Block” on page 125

• “Configuration Set Updates” on page 126

• “Command to Initiate Data Logging During Simulation” on page 126

• “Commands for Obtaining Model and Subsystem Checksums” on page 127

• “Sample Hit Time Adjusting Diagnostic” on page 127

• “Function-Call Models Can Now Run Without Being Referenced” on page
127

• “Signal Builder Supports Printing of Signal Groups” on page 127

• “Method for Comparing Simulink Data Objects” on page 128

• “Unified Font Preferences Dialog Box” on page 128

• “Limitation on Number of Referenced Models Eliminated for Single
References” on page 128

• “Parameter Objects Can Now Be Used to Specify Model Configuration
Parameters” on page 128

123

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006b

Simulink® Release Notes

• “Parameter Pooling Is Now Always Enabled” on page 129

• “Attempting to Reference a Symbol in an Uninitialized Mask Workspace
Generates an Error” on page 129

• “Changes to Integrator Block’s Level Reset Options” on page 130

• “Embedded MATLAB Function Block Features and Changes” on page 130

Model Dependency Viewer
The Model Dependency Viewer displays a dependency view of a model
that shows models and block libraries directly or indirectly referenced by
the model. The dependency view allows you to quickly determine your
model’s dependencies on referenced models and block libraries. See “Model
Dependencies” for more information.

Enhanced Lookup Table Blocks
This release replaces the PreLookup Index Search and Interpolation (n-D)
Using PreLookup blocks with two new blocks: Prelookup and Interpolation
Using Prelookup. The new blocks provide fixed-point arithmetic, consistency
checking, more efficient code generation, and other enhancements over the
blocks they replace.

Compatibility Considerations
The MathWorks plans on obsoleting the PreLookup Index Search and
Interpolation (n-D) Using PreLookup blocks in a future release. In the
meantime, the MathWorks will continue to support and enhance these blocks.
For example, this release improves the precision with which the PreLookup
Index Search block computes its fraction value if its Index search method
parameter specifies Evenly Spaced Points.

We recommend that you use the Prelookup and Interpolation Using Prelookup
blocks for all new model development.

Legacy Code Tool
The Legacy Code Tool generates an S-function from existing C code and
specifications that you supply. It enables you to transform your C functions
into C MEX S-functions for inclusion in a Simulink model. See “Integrating

124

Version 6.5 (R2006b) Simulink® Software

Existing C Functions into Simulink Models with the Legacy Code Tool” in
Writing S-Functions for more information.

Simulink Software Now Uses Internal MATLAB
Functions for Math Operations
In previous releases, Simulink software used the host compiler’s C++ Math
Library functions to perform most mathematical operations on floating-point
data. Some of those functions produced results that were slightly inconsistent
with MATLAB results. In this release, Simulink software calls the same
internal routines that MATLAB calls for most trigonometric, exponential,
and rounding and remainder operations involving floating-point data. This
ensures that when Simulink and MATLAB products operate on the same
platform, they produce the same numerical results.

In particular, Simulink software now performs mathematical operations with
the same internal functions that MATLAB uses to implement the following
M-functions:

• sin, cos, tan

• asin, acos, atan, atan2

• sinh, cosh, tanh

• asinh, acosh, atanh

• log, log2, log10

• mod, rem

• power

Note By default, in this release Real-Time Workshop software continues to
use C Math Library functions in the code that it generates from a Simulink
model.

Enhanced Integer Support in Math Function Block
The sqrt operation in the Math Function block now supports built-in integer
data types.

125

Simulink® Release Notes

Configuration Set Updates
This release includes the following changes to model configuration parameters
and configuration sets.

• This release includes a new command, openDialog, that displays the
Configuration Parameters dialog box for a specified configuration set.
This command allows display of configuration sets that are not attached to
any model.

• The attachConfigSet command now includes an allowRename option that
determines how the command handles naming conflicts when attaching a
configuration set to a model.

• This release includes a new attachConfigSetCopy command that attaches
a copy of a specified configuration set to a model.

• The new Sample hit time adjusting diagnostic controls whether
Simulink software notifies you when the solver has to adjust a sample
time specified by your model to solve the model. The associated model
parameter is TimeAdjustmentMsg.

• The default value of the Multitask data store diagnostic has changed
from Warning to Error for new models. This change does not affect existing
models.

• The name of the Block reduction optimization parameter has changed
to Block reduction.

Command to Initiate Data Logging During Simulation
The command

set_param(bdroot, 'SimulationCommand', 'WriteDataLogs')

writes all logging variables during simulation. See “Logging Signals” for
more information.

126

Version 6.5 (R2006b) Simulink® Software

Commands for Obtaining Model and Subsystem
Checksums
This release includes commands for obtaining model and subsystem
checksums.

• Simulink.BlockDiagram.getChecksum

Get checksum for a model. Simulink Accelerator software uses this
checksum to control regeneration of simulation targets. You can use this
command to diagnose target rebuild problems.

• Simulink.SubSystem.getChecksum

Get checksum for a subsystem. Real-Time Workshop software uses this
checksum to control reuse of code generated from a subsystem that occurs
more than once in a model. You can use the checksum to diagnose code
reuse problems. See “Determining Why Subsystem Code Is Not Reused”.

Sample Hit Time Adjusting Diagnostic
The Sample hit time adjusting diagnostic controls whether Simulink
software notifies you when the solver has to adjust a sample time specified
by your model to solve the model. The associated model parameter is
TimeAdjustmentMsg.

Function-Call Models Can Now Run Without Being
Referenced
This release allows you to simulate a function-call model, i.e., a model that
contains a root-level function-call trigger block, without having to reference
the model. In previous releases, the function-call model had to be referenced
by another model in order to be simulated.

Signal Builder Supports Printing of Signal Groups
This release adds printing options to the Signal Builder block’s editor. It
allows you to print waveforms displayed in the editor to a printer, file, the
clipboard, or a figure window. For details, see “Printing, Exporting, and
Copying Waveforms”.

127

Simulink® Release Notes

Method for Comparing Simulink Data Objects
This release introduces an isContentEqual method for Simulink data objects
that allows you to determine whether a Simulink data object has the same
property values as another Simulink data object. For more information, see
“Comparing Data Objects”.

Unified Font Preferences Dialog Box
In this release, the Simulink Preferences dialog box displays font settings
for blocks, lines, and annotations on a single pane instead of on separate
tabbed panes as in previous releases. This simplifies selection of font
preferences.

Limitation on Number of Referenced Models
Eliminated for Single References
In previous releases, all distinct models referenced in a model hierarchy
counted against the limitation imposed by Microsoft Windows on the number
of distinct referenced models that can occur in a hierarchy. In this release,
models configured to be instantiable only once do not account against this
limit. This means that a model hierarchy can reference any number of distinct
models on Windows platforms as long as they are referenced only once and
are configured to be instantiable only once (see “Simulink Model Referencing
Limitations” for more information).

Parameter Objects Can Now Be Used to Specify
Model Configuration Parameters
This release allows you to use Simulink.Parameter objects to specify model
configuration as well as block parameters. For example, you can specify
a model’s fixed step size as Ts and its stop time as 20*Ts where Ts is a
workspace variable that references a parameter object. When compiling a
model, Simulink software replaces a reference to a parameter object in a
model configuration parameter expression with the object’s value.

Compatibility Considerations
In previous releases, you could use expressions of the form p.Value(),
where p references a parameter object, in model configuration parameter

128

Version 6.5 (R2006b) Simulink® Software

expressions. Such expressions cause expression evaluation errors in this
release when you compile a model. You should replace such expressions with a
simple reference to the parameter object itself, i.e., replace p.Value() with p.

Parameter Pooling Is Now Always Enabled
In previous releases, the Parameter Pooling optimization was optional and
was enabled by default. Due to internal improvements, disabling Parameter
Pooling would no longer be useful in any context. The optimization is
therefore part of standard R2006b operation, and has been removed from
the user interface.

Compatibility Considerations
Upgrading a model to R2006b inherently provides the effect that enabling
Parameter Pooling did in previous releases. No compatibility considerations
result from this change. If the optimization was disabled in an existing model,
a warning is generated when the model is first upgraded to R2006b. This
warning requires no action and can be ignored.

Attempting to Reference a Symbol in an Uninitialized
Mask Workspace Generates an Error
In this release, attempting to reference an error in an uninitialized mask
workspace generates an error. This can happen, for example, if a masked
subsystem’s initialization code attempts to set a parameter of a block that
resides in a masked subsystem in the subsystem being initialized and one or
more of the block’s parameters reference variables defined by the mask of the
subsystem in which it resides (see “Initialization Command Limitations”for
more information).

Compatibility Considerations
In this release, updating or simulating models created in previous releases
may generate unresolvable symbol error messages. This can happen if
the model contains masked subsystems whose initialization code sets
parameters on blocks residing in lower-level masked subsystems residing
in the top-level masked subsystem. To eliminate these errors, change the
initialization code to avoid the use of set_param commands to set parameters
in lower-level masked subsystems. Instead, use mask variables in upper-level

129

Simulink® Release Notes

masked subsystems to specify the values of parameters of blocks residing in
lower-level masked subsystems. See for information on using mask variables
to specify block parameter values.

Changes to Integrator Block’s Level Reset Options
This release changes the behavior of the level reset option of the Integrator
block. In releases before Simulink 6.3, the level reset option resets the
integrator’s state if the reset signal is nonzero or changes from nonzero in the
previous time step to zero in the current time step. In Simulink 6.3, 6.4, and
6.4.1, the option resets the integrator only if the reset signal is nonzero. This
release restores the level reset behavior of releases that preceded Simulink
6.3. It also adds a level hold option that behaves like the level reset option
of Simulink 6.3, 6.4, and 6.4.1.

Compatibility Considerations
A model that uses the level reset option could produce results that differ in
this release from those produced in Simulink 6.3, 6.4, and 6.4.1. To reproduce
the results of previous releases, change the model to use the new level
hold option instead.

Embedded MATLAB Function Block Features and
Changes

Support for Structures
You can now define structures as inputs, outputs, local, and persistent
variables in Embedded MATLAB Function blocks. With support for
structures, Embedded MATLAB Function blocks give you the ability to read
and write Simulink bus signals at inputs and outputs of Embedded MATLAB
Function blocks. See “Working with Structures” in the Embedded MATLAB
documentation.

Embedded MATLAB Editor Analyzes Code with M-Lint
The Embedded MATLAB Editor uses the MATLAB M-Lint Code Analyzer to
automatically check your Embedded MATLAB function code for errors and
recommend corrections. The editor displays an M-Lint bar that highlights
offending lines of code and displays Embedded MATLAB diagnostics as well

130

Version 6.5 (R2006b) Simulink® Software

as MATLAB messages. See “Using M-Lint with Embedded MATLAB Code” in
the Embedded MATLAB documentation.

New Embedded MATLAB Runtime Library Functions
Embedded MATLAB Function blocks provide 36 new runtime library
functions in the following categories:

• “Data Analysis” on page 131

• “Discrete Math” on page 131

• “Exponential” on page 132

• “Interpolation and Computational Geometry” on page 132

• “Linear Algebra” on page 132

• “Logical” on page 133

• “Specialized Plotting” on page 133

• “Transforms” on page 133

• “Trigonometric” on page 133

Data Analysis.

• cov

• ifftshift

• std

• var

Discrete Math.

• gcd

• lcm

131

Simulink® Release Notes

Exponential.

• expm1

• log10

• log1p

• log2

• nextpow2

• nthroot

• reallog

• realpow

• realsqrt

Interpolation and Computational Geometry.

• cart2pol

• cart2sph

• pol2cart

• sph2cart

Linear Algebra.

• cond

• det

• ipermute

• kron

• permute

• planerot

• rand

• randn

• rank

132

Version 6.5 (R2006b) Simulink® Software

• shiftdim

• squeeze

• subspace

• trace

Logical.

• isstruct

Specialized Plotting.

• histc

Transforms.

• bitrevorder

Trigonometric.

• hypot

New Requirement for Calling MATLAB Functions from
Embedded MATLAB Function Blocks
To call external MATLAB functions fromEmbedded MATLAB Function
blocks, you must first declare the functions to be extrinsic. (External
MATLAB functions are functions that have not been implemented in the
Embedded MATLAB runtime library.) MATLAB Function blocks do not
compile or generate code for extrinsic functions; instead, they send the
function to MATLAB for execution during simulation. There are two ways
to call MATLAB functions as extrinsic functions in Embedded MATLAB
Function blocks:

• Use the new construct eml.extrinsic to declare the function extrinsic

• Call the function using feval

For details, see “Calling MATLAB Functions” in the Embedded MATLAB
documentation.

133

Simulink® Release Notes

Compatibility Considerations. Currently, Embedded MATLAB Function
blocks use implicit rules to handle calls to external functions:

• For simulation, Embedded MATLAB Function blocks send the function
to MATLAB for execution

• For code generation, Embedded MATLAB Function blocks check whether
the function affects the output of the Embedded MATLAB function in
which it is called. If there is no effect on output, Embedded MATLAB
Function blocks proceed with code generation, but exclude the function call
from the generated code. Otherwise, Embedded MATLAB Function blocks
generate a compiler error.

In future releases, Embedded MATLAB Function blocks will apply these rules
only to external functions that you call as extrinsic functions. Otherwise, they
will compile external functions by default, potentially causing unpredictable
behavior or generating errors. For reliable simulation and code generation,
The MathWorks recommends that you call external MATLAB functions as
extrinsic functions.

Type and Size Mismatch of Values Returned from MATLAB
Functions Generates Error
Embedded MATLAB Function blocks now generate an error if the type
and size of a value returned by a MATLAB function does not match the
predeclared type and size.

Compatibility Considerations. In previous releases, Embedded MATLAB
Function blocks attempted to silently convert values returned by MATLAB
functions to predeclared data type and sizes if a mismatch occurred. Now,
such mismatches always generate an error, as in this example:

x = int8(zeros(3,3)); % Predeclaration
x = eval('5'); % Calls MATLAB function eval

This code now generates an error because the Embedded MATLAB function
predeclares x as a 3–by-3 matrix, but MATLAB function returns x as a scalar
double. To avoid errors, reconcile predeclared data types and sizes with the
actual types and sizes returned by MATLAB function calls in your Embedded
MATLAB Function blocks.

134

Version 6.5 (R2006b) Simulink® Software

Embedded MATLAB Function Blocks Cannot Output Character
Data
Embedded MATLAB Function blocks now generate an error if any of its
outputs is character data.

Compatibility Considerations. In the previous release, Embedded
MATLAB Function blocks silently cast character array outputs to int8 scalar
arrays. This behavior does not match MATLAB, which represents characters
in 16–bit unicode.

135

Simulink® Release Notes

Version 6.4.1 (R2006a+) Simulink Software
This table summarizes what’s new in V6.4.1 (R2006a+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
at Web site

No

136

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006a%2B

Version 6.4 (R2006a) Simulink® Software

Version 6.4 (R2006a) Simulink Software
This table summarizes what’s new in V6.4 (R2006a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations
below. See also
Summary.

Bug Reports
at Web site

No

New features and changes introduced in this version are

• “Signal Object Initialization” on page 138

• “Icon Shape Property for Logical Operator Block” on page 138

• “Data Type Property of Parameter Objects Now Settable” on page 138

• “Range-Checking for Parameter and Signal Object Values” on page 138

• “Expanded Menu Customization” on page 139

• “Bringing the MATLAB Desktop Forward” on page 139

• “Converting Atomic Subsystems to Model References” on page 139

• “Concatenate Block” on page 139

• “Model Advisor Changes” on page 140

• “Built-in Block’s Initial Appearance Reflects Parameter Settings” on page
140

• “Double-Click Model Block to Open Referenced Model” on page 141

• “Signal Logs Reflect Bus Hierarchy” on page 141

• “Tiled Printing” on page 141

• “Solver Diagnostic Controls” on page 141

• “Diagnostic Added for Multitasking Conditionally Executed Subsystems”
on page 142

137

http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006a
http://www.mathworks.com/support/bugreports/?product=SL&release;=R2006a

Simulink® Release Notes

• “Embedded MATLAB Function Block Features and Changes” on page 142

Signal Object Initialization
This release introduces the use of signal objects to specify initial values
for signals and states. This allows you to initialize signals or states in the
model, not just those generated by blocks that have initial condition or value
parameters. For details, see “Using Signal Objects to Initialize Signals and
Discrete States” in the online Simulink documentation.

Icon Shape Property for Logical Operator Block
The Logical Operator block’s parameter dialog box contains a new property,
Icon shape, settings for which can be either rectangular or distinctive. If
you select rectangular (the default), the block appears as it does in previous
releases. If you select distinctive, the block appears as the IEEE® standard
graphic symbol for the selected logic operator.

Data Type Property of Parameter Objects Now
Settable
This release allows you to set the data type of a Simulink.Parameter object
via either its Value property or via its Data type property. In previous
releases, you could specify the data type of a parameter object only by setting
the object’s Value property to a typed value expression.

Range-Checking for Parameter and Signal Object
Values
This release introduces range checking for Simulink.Parameter and
Simulink.Signal objects. Simulink software checks whether a parameter’s
Value or a signal’s Initial value falls within the values you specify for the
object’s Minimum and Maximum properties. If not, Simulink software
generates a warning or error.

Compatibility Considerations
Previous releases ignored such violations since the Minimum and Maximum
properties were intended for use in documenting parameter and signal
objects. In this release, Simulink software displays a warning if you load

138

Version 6.4 (R2006a) Simulink® Software

a parameter object or a signal object does not specify a valid range or its
value falls outside the specified range. If you get such a warning, change
the parameter or signal object’s Value or Minimum or Maximum values so that
the Value falls within a valid range.

Expanded Menu Customization
The previous release of Simulink software allows you to customize the
Simulink editor’s Tools menu. This release goes a step further and allows
you to customize any Simulink (or Stateflow) editor menu (see “Customizing
the Simulink User Interface” in the online Simulink documentation).

Bringing the MATLAB Desktop Forward
The Model Editor’s View menu includes a new command, MATLAB
Desktop, that brings the MATLAB desktop to the front of the windows
displayed on your screen.

Converting Atomic Subsystems to Model References
This release adds a command, Convert to Model Block, to the context
(right-click) menu of an atomic subsystem. Selecting this command converts
an atomic subsystem to a model reference . See Atomic Subsystem and
“Converting a Subsystem to a Referenced Model” for more information.

The function sl_convert_to_model_reference, which provided some of the
same capabilities as Convert to Model Block, is obsolete and has been
removed from the documentation. The function continues to work, so no
incompatibility arises, but it posts a warning when called. The function will
be removed in a future release.

Concatenate Block
The new Concatenate block concatenates its input signals to create a single
output signal whose elements occupy contiguous locations in memory. The
block typically uses less memory than the Matrix Concatenation block that it
replaces, thereby reducing model memory requirements.

139

Simulink® Release Notes

Compatibility Considerations
This release replaces obsolete Matrix Concatenation blocks with Concatenate
blocks when loading models created in previous releases.

Model Advisor Changes

Model Advisor Tasks Introduced
This release introduces Model Advisor tasks for referencing models and
upgrading a model to the current version of Simulink software. See
“Consulting the Model Advisor” in the online Simulink documentation for
more information.

Model Advisor API
This release introduces an application program interface (API) that enables
you to run the Model Advisor from the MATLAB command line or from M-file
programs. For example, you can use the API to create M-file programs that
determine whether a model passes selected Model Advisor checks whenever
you open, simulate, or generate code from the model. See “Running the Model
Advisor Programmatically” in the online Simulink documentation for more
information.

Built-in Block’s Initial Appearance Reflects Parameter
Settings
In this release, when you load a model containing nonmasked, built-in blocks
whose appearance depends on their parameter settings, such as the Selector
block, the appearance of the blocks reflect their parameter settings. You no
longer have to update the model to update the appearance of such blocks.

Compatibility Considerations
In previous releases, model or block callback functions that use set_param to
set a built-in, nonmasked block’s parameters could silently put the block in an
unusable state. In this release, such callbacks will trigger error messages if
they put blocks in an unusable state.

140

Version 6.4 (R2006a) Simulink® Software

Double-Click Model Block to Open Referenced Model
In this release, double-clicking a Model block that specifies a valid referenced
model opens the referenced model, rather than the Block Parameters dialog
box as in previous releases. To open the Block Parameters dialog box, choose
Model Reference Parameters from the Context or Edit menu. See
“Navigating a Model Block” for details.

Signal Logs Reflect Bus Hierarchy
In this release, signal logs containing buses reflect the structure of the
buses themselves instead of flattening bus data as in previous releases (see
Simulink.TsArray).

Tiled Printing
This release introduces a tiled printing option that allows you to distribute
a block diagram over multiple pages. You can control the number of pages
over which Simulink software distributes the block diagram, and hence, the
total size of the printed image. See “Tiled Printing” in the online Simulink
documentation for more information.

Solver Diagnostic Controls
In this release, the Configuration Parameters dialog box includes the
following enhancements:

• The Diagnostics pane contains a new diagnostic, Consecutive zero
crossings violation, that alerts you if Simulink software detects the
maximum number of consecutive zero crossings allowed. You can specify
the criteria that Simulink software uses to trigger this diagnostic using two
new Solver diagnostic controls on the Solver pane:

- Consecutive zero crossings relative tolerance

- Number of consecutive zero crossings allowed

For more information, see “Preventing Excessive Zero Crossings” in the
online Simulink documentation.

• The Solver pane contains a new solver diagnostic control, Number of
consecutive min step size violations allowed, that Simulink software

141

Simulink® Release Notes

uses to trigger the Min step size violation diagnostic (see “Number of
consecutive min steps” in the online Simulink documentation).

Diagnostic Added for Multitasking Conditionally
Executed Subsystems
This release adds a sample-time diagnostic that detects an enabled subsystem
in multitasking solver mode that operates at multiple rates or a conditionally
executed subsystem that contain an asynchronous subsystem. Such
subsystems can cause corrupted data or non-deterministic behavior in a
real-time system using code generated from the model. See the documentation
for theMultitask Conditionally Executed Subsystem diagnostic for more
information.

Embedded MATLAB Function Block Features and
Changes

Option to Disable Saturation on Integer Overflow
The properties dialog for Embedded MATLAB Function blocks provides a new
Saturate on Integer Overflow check box that lets you disable saturation on
integer overflow to generate more efficient code. When you enable saturation
on integer overflow, Embedded MATLAB Function blocks add additional
checks in the generated code to detect integer overflow or underflow.
Therefore, it is more efficient to disable this option if your algorithm does not
rely on overflow behavior. For more information, see “Setting Embedded
MATLAB Function Block Properties” in the online Simulink documentation.

Nontunable Option Allows Use of Parameters in Constant
Expressions
The Data properties dialog for the Embedded MATLAB Function block
provides a new Tunable check box that lets you specify the tunability (see
“Tunable Parameters” in the online Simulink documentation) of a workspace
variable or mask parameter used as data in Embedded MATLAB code. The
option is checked by default. Unchecking the option allows you to use a
workspace variable or mask parameter as data wherever Embedded MATLAB
requires a constant expression, such as a dimension argument to the zeros
function. For more information, see “Adding Data to an Embedded MATLAB
Function Block” in the online Simulink documentation.

142

Version 6.4 (R2006a) Simulink® Software

Enhanced Support for Fixed-Point Arithmetic
Embedded MATLAB Function blocks support the new fixed-point features
introduced in Version 1.4 (R2006a) of the Fixed-Point Toolbox software,
including [Slope Bias] scaling (see “Specifying Simulink Fixed Point Data
Properties” in the online Simulink documentation). For information about
the features added to the Fixed-Point Toolbox software, see “Fixed-Point
Toolbox Release Notes”.

Support for Integer Division
Embedded MATLAB Function blocks support the new MATLAB function
idivide, which performs integer division with a variety of rounding options.
It is recommended that the rounding option used for integer division in
Embedded MATLAB Function blocks match the rounding option in the parent
Simulink model.

The default rounding option for idivide is 'fix', which rounds toward
zero. This option corresponds to the choice Zero in the submenu for Signed
integer division rounds to:, a parameter that you can set in the Hardware
Implementation Pane of the Configuration Parameters dialog in Simulink
software (see “Hardware Implementation Pane” in the online Simulink
documentation). If this parameter is set to Floor in the Simulink model that
contains the Embedded MATLAB Function block, it is recommended that you
pass the rounding option 'floor' to idivide in the block.

For a complete list of Embedded MATLAB runtime library functions provided
in this release, see “New Embedded MATLAB Runtime Library Functions”
on page 143.

New Embedded MATLAB Runtime Library Functions
Embedded MATLAB Function blocks provide new runtime library functions
in the following categories:

• “Integer Arithmetic” on page 144

• “Linear Algebra” on page 144

• “Logical” on page 145

• “Polynomial” on page 145

143

Simulink® Release Notes

• “Trigonometric” on page 145

Integer Arithmetic.

• idivide

Linear Algebra.

• compan

• dot

• eig

• fliplr

• flipud

• freqspace

• hilb

• ind2sub

• invhilb

• linspace

• logspace

• magic

• median

• meshgrid

• pascal

• qr

• rot90

• sub2ind

• toeplitz

• vander

• wilkinson

144

Version 6.4 (R2006a) Simulink® Software

Logical.

• isequal

• isinteger

• islogical

Polynomial.

• polyfit

• polyval

Trigonometric.

• acosd

• acot

• acotd

• acoth

• acsc

• acscd

• acsch

• asec

• asecd

• asech

• asind

• atand

• cosd

• cot

• cotd

• coth

• csc

145

Simulink® Release Notes

• cscd

• csch

• sec

• secd

• sech

• sind

• tand

Setting FIMATH Cast Before Sum to False No Longer Supported
in Embedded MATLAB MATLAB Function Blocks
You can no longer set the FIMATH property CastBeforeSum to false for
fixed-point data in Embedded MATLAB Function blocks.

Compatibility Considerations. The reason for the restriction is that
Embedded MATLAB Function blocks do not produce the same numerical
results as MATLAB when CastBeforeSum is false. In the previous release,
Embedded MATLAB Function blocks set CastBeforeSum to false by default
for the default FIMATH object. If you have existing models that contain
Embedded MATLAB Function blocks in which CastBeforeSum is false, you
will get an error when you compile or update your model. To correct the issue,
you must set CastBeforeSum to true. To automate this process, you can run
the utility slupdate either from the Model Advisor or by typing the following
command at the MATLAB command line:

slupdate ('modelname')

where ’modelname’ is the name of the model containing the Embedded
MATLAB Function block that generates the error. slupdate prompts you to
update this property by selecting one of these options:

Option Action

Yes Updates the first occurrence of CastBeforeSum=false in
Embedded MATLAB Function blocks in the offending model and
then prompts you for each subsequent one found in the model.

146

Version 6.4 (R2006a) Simulink® Software

Option Action

No Does not update any occurrences of CastBeforeSum=false in
the offending model.

All Updates all occurrences of CastBeforeSum=false in the
offending model.

Note slupdate detects CastBeforeSum=false only in default FIMATH objects
defined for Simulink software signals in Embedded MATLAB Function
blocks. If you modified the FIMATH object in an Embedded MATLAB Function
block, update CastBeforeSum manually in your model and fix the errors as
they are reported.

Type Mismatch of Scalar Output Data in Embedded MATLAB
Function Blocks Generates Error
Embedded MATLAB Function blocks now generate an error if the output type
inferred by the block does not match the type you explicitly set for a scalar
output.

Compatibility Considerations. In previous releases, a silent cast was
inserted from the computed type to the set type when mismatches occurred.
In most cases, you should not need to set the output type for Embedded
MATLAB Function blocks. When you do, insert an explicit cast in your
Embedded MATLAB script. For example, suppose you declare a scalar output
y to be of type int8, but its actual type is double. Replace y with a temporary
variable t in your script and then add the following code:

y = int8(t);

Implicit Parameter Type Conversions No Longer Supported in
Embedded MATLAB Function Blocks
Embedded MATLAB Function blocks now generate an error if the type of a
parameter inferred by the block does not match the type you explicitly set
for the parameter.

147

Simulink® Release Notes

Compatibility Considerations. In the previous release, if the type you
set for a parameter did not match the actual parameter value, Embedded
MATLAB Function blocks implicitly cast the parameter to the specified
type. Now you receive a compile-time error when type mismatches occur for
parameters defined in Embedded MATLAB Function blocks.

There are two workarounds:

• Change the scope of the data from Parameter to Input. Then, connect to
the input port a Constant block that brings in the parameter and casts it
to the desired type.

• Cast the parameter inside your Embedded MATLAB function to the
desired type.

Fixed-Point Parameters Not Supported
Embedded MATLAB Function blocks generate a compile-time error if you try
to bring a fi object defined in the base workspace into Embedded MATLAB
Function blocks as a parameter.

There are two workarounds:

• Change the scope of the data from Parameter to Input. Then, connect to
the input port a Constant block that brings in the parameter and casts
it to fixed-point type.

• Cast the parameter inside your Embedded MATLAB function to fixed-point
type.

Embedded MATLAB Function Blocks Require C Compiler for
Windows 64
No C compiler ships with MATLAB and Simulink products on Windows 64.
Because Embedded MATLAB Function blocks perform simulation through
code generation, you must supply your own MEX-supported C compiler to use
these blocks. The C compilers available at the time of this writing for Windows
64 include Microsoft Visual Studio® 2005 and the Microsoft Platform SDK.

148

Version 6.3 (R14SP3) Simulink® Software

Version 6.3 (R14SP3) Simulink Software
This table summarizes what’s new in V6.3 (R14SP3):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
at Web site

No

New features and changes introduced in this version are organized by these
topics:

• “Model Referencing” on page 149

• “Block Enhancements” on page 151

• “Modeling Enhancements” on page 153

• “Simulation Enhancements” on page 155

• “User Interface Enhancements” on page 156

• “MEX-Files on Windows Systems” on page 157

• “Fixed-Point Functions No Longer Supported for Use in Signal Objects”
on page 157

• “Parameter Object Expressions No Longer Supported in Dialog Boxes”
on page 157

• “MEX-File Extension Changed” on page 158

Model Referencing
This topic contains new features and changes for model reference:

149

http://www.mathworks.com/support/bugreports/?product=SL&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=SL&release;=R14SP3

Simulink® Release Notes

New Features and Changes

Function-Call Models. This release allows you to use a block capable
of emitting a function-call signal, such as a Function-Call Generator or
a custom S-function, in one model to control execution of another model
during the current time step. See “Defining Function-Call Models” in the
Simulinkdocumentation for more information.

Using Noninlined S-Functions in Referenced Models. This release adds
limited support for use of noninlined S-functions in models referenced by
other models. For example, you can simulate a model that references models
containing noninlined S-functions. However, you cannot use Real-Time
Workshop software to generate a standalone executable (Real-Time Workshop
target) for the model. See “Simulink Model Referencing Limitations” in the
Simulink documentation for information on other limitations.

Referenced Models Without Root I/O Can Inherit Sample Times.
Previous releases of Simulink software do not allow referenced models
without root-level input or output ports to inherit their sample time. This
release removes this restriction.

Referenced Models Can Use Variable Step Solvers. Previous releases
of Simulink software do not allow models to reference models that require
variable-step solvers. This release removes this restriction.

Model Dependency Graphs Accessible from the Tools Menu. This
release adds a Model Reference Dependency Graph item to the Model
Editor’s Tools menu. The item displays a graph of the models referenced by
the model displayed in the Model Editor. You can open any model in the
dependency graph by clicking its node. See “Viewing a Model Reference
Hierarchy” in the Simulinkdocumentation for more information.

Command That Converts Atomic Subsystems to Model
References. This release introduces a MATLAB command
that converts an atomic subsystem to a model reference. See
Simulink.SubSystem.convertToModelReference in the Simulink Reference
documentation for more information.

Model Reference Demos. This release has the following model reference
demo changes:

150

Version 6.3 (R14SP3) Simulink® Software

• Model reference demo names are now prepended with sldemo_. For
example, the demo mdlref_basic.mdl is now sldemo_mdlref_basic.mdl.

• You can no longer use the mdlrefdemos command from the MATLAB
command prompt to access model reference demos. Instead, you can
navigate to the Simulink demos tab either though the Help browser, or by
typing demos at the command prompt, then navigating to the Simulink
demos category and browsing the demos.

Block Enhancements

Variable Transport Delay, Variable Time Delay Blocks
This release replaces the Variable Transport Delay block of previous releases
with two new blocks. The Variable Transport Delay block of previous releases
implemented a variable time delay behavior, which is now implemented
by the Variable Time Delay block introduced in this release. This release
changes the behavior of the Variable Transport Delay block to model variable
transport delay behavior, e.g., the behavior of a fluid flowing through a pipe.

Additional Reset Trigger for Discrete-Time Integrator Block
This release adds a sampled level trigger option for causing the
Discrete-Time Integrator to reset. The new reset trigger is more efficient than
the level reset option, but may introduces a discontinuity when integration
resumes.

Note In Simulink 6.2 and 6.2.1, the level reset option behaves like the
sampled level option in this release. This release restores the level reset
option to its original behavior.

Input Port Latching Enhancements
This release includes the following enhancements to the signal latching
capabilities of the Inport block.

151

Simulink® Release Notes

Label Clarified for Triggered Subsystem Latch Option. The dialog box
for an Inport block contains a check box to latch the signal connected to the
system via the port. This check box applies only to triggered subsystems and
hence is enabled only when the Inport block resides in a triggered subsystem.
In this release, the label for the check box that selects this option has changed
from Latch (buffer) input to Latch input by delaying outside signal.
This change is intended to make it clear what the option does, i.e., cause the
subsystem to see the input signal’s value at the previous time step when
the subsystem executes at the current time step (equivalent to inserting a
Memory block at the input outside the subsystem). The Inport block’s icon
displays <Lo> to indicate that this option is selected.

Latch Option Added for Function-Call Subsystems. This release adds
a check box labeled Latch input by copying inside signal to the Inport
block’s dialog box. This option applies only to function-call subsystems and
hence is enabled only if the Inport block resides in a function-call subsystem.
Selecting this option causes Simulink software to copy the signal output by
the block into a buffer before executing the contents of the subsystem and
to use this copy as the block’s output during execution of the subsystem.
This ensures that the subsystem’s inputs, including those generated by the
subsystem’s context, will not change during execution of the subsystem. The
Inport block’s icon displays to indicate that this option is selected.

Improved Function-Call Inputs Warning Label
In previous releases, the dialog box for a function-call subsystem contains
a check box labeled Warn if function-call inputs arise inside called
context. This release changes the label to Warn if function-call inputs
are context-specific. This change is intended to indicate more clearly the
warning’s purpose, i.e., to alert you that some or all of the function-call inputs
come from the function-call subsystem’s context and hence could change while
the function-call subsystem is executing.

Note In this release, you can avoid this function-call inputs problem
by selecting the Latch input by copying inside signal option on the
subsystem’s Inport blocks (see “Latch Option Added for Function-Call
Subsystems” on page 152).

152

Version 6.3 (R14SP3) Simulink® Software

Modeling Enhancements

Annotations
This release introduces the following enhancements to model annotations:

• Annotation properties dialog box (see “Annotations Properties Dialog Box”
in the Simulinkdocumentation)

• Annotation callback functions (see “Annotation Callback Functions” in
the Simulinkdocumentation)

• Annotation application programming interface (see “Annotations API” in
the Simulinkdocumentation)

Custom Signal Viewers and Generators
This release allows you to add custom signal viewers and generators so that
you can manage them in the Signal & Scope Manager. See “Adding Custom
Viewers and Generators” in the Simulinkdocumentation for further details.

Model Explorer Search Option
This release adds an Evaluate Property Values During Search option to
the Model Explorer. This option applies only for searches by property value.
If enabled, the option causes the Model Explorer to evaluate the value of
each property as a MATLAB expression and compare the result to the search
value. If disabled (the default), the Model Explorer compares the unevaluated
property value to the search value.

Using Signal Objects to Assign Signal Properties
Previous releases allow you to use signal objects to check signal property
values assigned by signal sources. This release allows you, in addition, to
use signal objects to assign values to properties not set by signal sources.
See Simulink.Signal in the Simulink Reference documentation for more
information.

153

Simulink® Release Notes

Bus Utility Functions
This release introduces the following bus utility functions:

• Simulink.Bus.save

• Simulink.Bus.createObject

• Simulink.Bus.cellToObject

Fixed-Point Support in Embedded MATLAB Function Blocks
In this release, the Embedded MATLAB Function block supports many
Fixed-Point Toolbox functions. This allows you to generate code from models
that contain fixed-point M functions. See “Working with the Fixed-Point
Embedded MATLAB Subset” in the Fixed-Point Toolbox documentation for
more information.

Note You must have a Simulink Fixed Point license to use this capability.

Embedded MATLAB Function Editor
The Embedded MATLAB Editor has a new tool, the Ports and Data Manager.
This tool helps you manage your block inputs, outputs, and parameters.
The Ports and Data Manager uses the same Model Explorer dialogs for
manipulating data, but restricts the view to the block you are working on.
You can still access the Model Explorer via a menu item to get the same
functionality as in previous releases.

Input Trigger and Function-Call Output Support in Embedded
MATLAB Function Blocks
Embedded MATLAB Function blocks now supports input triggers
and function-call outputs. See “Ports and Data Manager” in the
Simulinkdocumentation for more information.

Find Options Added to the Data Object Wizard
This release adds find options to the Data Object Wizard. The options
enable you to restrict the search for model data to specific kinds of objects. See
“Data Object Wizard” in the Simulinkdocumentation for more information.

154

Version 6.3 (R14SP3) Simulink® Software

Simulation Enhancements

Viewing Logged Signal Data
This release can display logged signal data in the MATLAB Times Series
Tools viewer on demand or whenever a simulation ends or you pause a
simulation. See “Viewing Logged Signal Data” in the Simulinkdocumentation
for more information.

Importing Time-Series Data
In this release, root-level Inport blocks can import data from time-series
(see Simulink.Timeseries in the Simulink Reference documentation)
and time-series array (see Simulink.TSArray in the Simulink Reference
documentation) objects residing in the MATLAB workspace. See “Importing
Data from a Workspace” in the Simulinkdocumentation for more information.
From Workspace blocks can also import time-series objects. The ability to
import time-series objects allows you to use data logged from one simulation
as input to another simulation.

Using a Variable-Step Solver with Rate Transition Blocks
Previous releases of Simulink software generate an error if you try to use a
variable-step solver to solve a model that contains Rate Transition blocks.
This release allows you to use variable-step as well as fixed-step solvers to
simulate a model. Note that you cannot generate code from a model that
uses a variable-step solver. However, you may find it advantageous, in some
cases, to use a variable-step solver to test aspects of the model not directly
related to code generation. This enhancement allows you to switch back and
forth between the two types of solver without having to remove and reinsert
Rate Transition blocks.

Additional Diagnostics
This releases adds the following simulation diagnostics:

• “Enforce sample times specified by Signal Specification blocks” in the
online Simulink documentation

• “Extraneous discrete derivative signals” in the online Simulink
documentation

155

Simulink® Release Notes

• “Detect read before write” in the online Simulink documentation

• “Detect write after read” in the online Simulink documentation

• “Detect write after write” in the online Simulink documentation

Data Integrity Diagnostics Pane Renamed, Reorganized
This release changes the name of the Data Integrity diagnostics pane of the
Configuration Parameters dialog box to the Data Validity pane. It also
reorganizes the pane into groups of related diagnostics. See “Diagnostics Pane:
Data Validity” in the online Simulink documentation for more information.

Improved Sample-Time Independence Error Messages
When you enable the Ensure sample time independent solver constraint
(see “Periodic sample time constraint” for more information), Simulink
software generates several error messages if the model is not sample-time
independent. In previous releases, these messages were not specific enough
for you to determine why a model failed to be sample-time independent. In
this release, the messages point to the specific block, signal object, or model
parameter that causes the model not to be sample-time independent.

User Interface Enhancements

Model Viewing
This release adds the following model viewing enhancements:

• A command history for pan and zoom commands (see “Viewing Command
History” in the Simulinkdocumentation)

• Keyboard shortcuts for panning model views (see “Model Viewing
Shortcuts” in the Simulinkdocumentation)

Customizing the Simulink User Interface
This release allows you to use M-code to perform the following customizations
of the standard Simulink user interface:

• Add custom commands to the Model Editor’s Tools menu (see “Disabling
and Hiding Dialog Box Controls” in the Simulinkdocumentation)

156

Version 6.3 (R14SP3) Simulink® Software

• Disable, or hide widgets on Simulink dialog boxes (see “Disabling and
Hiding Dialog Box Controls” in the Simulinkdocumentation)

MEX-Files on Windows Systems
In this release, the extension for files created by the MATLAB mex command
on Windows systems has changed from dll to mexw32 or mexw64.

Compatibility Considerations
If you have implemented any S-functions in C, Ada, or Fortran or have models
that reference other models, you should

• Recreate any mexopts.bat files (other than the one in your MATLAB
preferences directory) that you use to build S-functions and model reference
simulation targets

• Rebuild your S-functions

Fixed-Point Functions No Longer Supported for Use
in Signal Objects

Compatibility Considerations
Previous releases allowed you to use fixed-point data type functions, such as
sfix, to specify the value of the DataType property of a Simulink.Signal
object. This release allows you to use only builtin data types and
Simulink.NumericType objects to specify the data types of Simulink.Signal
objects. See the Simulink.Signal documentation for more information.

Parameter Object Expressions No Longer Supported
in Dialog Boxes

Compatibility Considerations
Previous releases allow you to specify a Simulink.Parameter object as the
value of a block parameter by entering an expression that returns a parameter
object in the parameter’s value field in the block’s parameter dialog box. In
this release, you must enter the name of a variable that references the object
in the MATLAB or model workspace.

157

Simulink® Release Notes

MEX-File Extension Changed
In this release, the extension for files created by the MATLAB mex command
has changed from dll to mexw32 (and mexw64).

Compatibility Considerations
If you use a mexopts.bat file other than the one created by the mex command
in your MATLAB preferences directory to build Accelerator targets, you
should recreate the file from the mexopts.bat template that comes with this
release.

158

Version 6.2 (R14SP2) Simulink® Software

Version 6.2 (R14SP2) Simulink Software
This table summarizes what’s new in V6.2 (R14SP2):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes Details below Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
at Web site

No

New features, changes, and limitations in this version are

• “Multiple Signals on Single Set of Axes” on page 159

• “Logging Signals to the MATLAB Workspace” on page 159

• “Legends that Identify Signal Traces” on page 160

• “Displaying Tic Labels” on page 160

• “Opening Parameters Dialog Box” on page 160

• “Rootlevel Input Ports” on page 160

See the Simulink 6.2 documentation for more information on these
enhancements.

Multiple Signals on Single Set of Axes
Viewers can now display multiple signals on a single set of axes.

Logging Signals to the MATLAB Workspace
Viewers can now log the signals that they display to the MATLAB base
workspace. See “Logging Signals” for more information.

159

http://www.mathworks.com/support/bugreports/?product=SL&release;=R14SP2
http://www.mathworks.com/support/bugreports/?product=SL&release;=R14SP2

Simulink® Release Notes

Legends that Identify Signal Traces
Viewers can now display a legend that identifies signal traces.

Displaying Tic Labels
Viewers can now display tic labels both inside and outside scope axes.

Opening Parameters Dialog Box
You can open a viewer’s parameters dialog box by right-clicking on the viewer
scope.

Rootlevel Input Ports

Compatibility Considerations
If you save a model with rootlevel input ports in this release and load it in a
previous release, you will get the following warning:

Warning: model, line xxx block_diagram does not have a parameter

named 'SignalName'.

You can safely ignore this warning.

160

Version 6.1 (R14SP1) Simulink® Software

Version 6.1 (R14SP1) Simulink Software
This table summarizes what’s new in V6.1 (R14SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed Bugs No

New features and changes introduced in this version are:

• “Changed Source Dialog Box Behavior” on page 161

• “Changed Model Explorer Source Behavior” on page 162

• “Affected Blocks” on page 162

• “Model Load Warnings” on page 163

In this release, Simulink software no longer provides the user with the ability
to change the values of source block parameters through either a dialog box or
the Model Explorer while a simulation is running.

*Changes described in this section reflect Simulink software reprogramming
implemented to comply with a court decision regarding patent litigation.

Changed Source Dialog Box Behavior
In this release, opening the dialog box of a source block with tunable
parameters causes a running simulation to pause. While the simulation
is paused, you can edit the parameter values displayed on the dialog box.
However, you must close the dialog box to have the changes take effect and
allow the simulation to continue. Similarly, starting a simulation causes any
open dialog boxes associated with source blocks with tunable parameters
to close.

161

Simulink® Release Notes

Since you can no longer change source block parameters while a simulation
is running, this release removes the Apply button from the dialog boxes
of source blocks.

Note In this release, as in previous releases, if you enable the Inline
parameters option, Simulink software does not pause the simulation when
you open a source block’s dialog box because all of the parameter fields are
disabled and can be viewed but cannot be changed.

Changed Model Explorer Source Behavior
In this release, the parameter fields in both the list view and the dialog pane
of the Model Explorer have been disabled and the Apply button has been
removed for source blocks with tunable parameters while a simulation is
running. As a result, you can no longer use the Model Explorer to change
source block parameters while a simulation is running.

Affected Blocks
Blocks affected are all source blocks with tunable parameters, including the
following blocks.

• Simulink source blocks, including

- Band-Limited White Noise

- Chirp Signal

- Constant

- Pulse Generator

- Ramp

- Random Number

- Repeating Sequence

- Signal Generator

- Sine Wave

- Step

162

Version 6.1 (R14SP1) Simulink® Software

- Uniform Random Number

• User-developed masked subsystem blocks that have one or more tunable
parameters and one or more output ports, but no input ports.

• S-Function and M-file (level 2) S-Function blocks that have one or more
tunable parameters and one or more output ports but no input ports.

• Source blocks in other MathWorks products, including:

- CDMA Reference Blockset product

- Communications Blockset product

- Embedded Target for TI’s C6000™ DSP

- Signal Processing Blockset product (formerly DSP Blockset)

- Simulink Fixed Point product (formerly Fixed-Point Blockset)

- System Identification Toolbox™ product

- xPC Target™ product

- xPC TargetBox® product

See the release notes for each product for a list of that product’s source
blocks affected by the changes in this release.

Model Load Warnings

Compatibility Considerations
If you open a model in Simulink 6.0 that was created or saved with Simulink
6.1, Simulink 6.0 displays warnings that the following parameters are
undefined:

• StrictBusMsg

• MdlSubVersion

Depending on the model, Simulink 6.0 may also display a warning that the
parameter BusObject is not defined. You can safely ignore these warnings.

163

Simulink® Release Notes

Version 6.0 (R14) Simulink Software
This table summarizes what’s new in V6.0 (R14):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed Bugs No

New features and changes introduced in this version are organized by these
topics:

• “Model Explorer” on page 165

• “Configuration Sets” on page 165

• “Model Referencing” on page 165

• “Model Workspaces” on page 166

• “Implicit Fixed-Step Solver” on page 167

• “The Signal and Scope Manager” on page 167

• “Data Object Type Enhancements” on page 167

• “Block Enhancements” on page 168

• “Signal Enhancements” on page 171

• “Rate Transition Enhancements” on page 172

• “Execution Context Enhancements” on page 173

• “Algebraic Loop Minimization” on page 173

• “Level-2 M-File S-Functions” on page 173

• “Panning Model Diagrams” on page 174

• “MATLAB Data Type Conversions” on page 174

164

Version 6.0 (R14) Simulink® Software

• “Signal Object Resolution Changes” on page 174

• “Loading Models Containing Non-ASCII Characters” on page 175

• “Change in Sample Time Behavior of Unary Minus Block” on page 176

• “Initial Output of Conditionally Executed Subsystems” on page 176

• “Execution Context Default Changes” on page 176

• “Simulink Accelerator Switch Blocks Can Abort Code Generation” on page
176

Model Explorer
The Model Explorer is a new tool that lets you quickly navigate, view, create,
configure, search, and modify all data and properties of a Simulink model
or Stateflow chart. See “The Model Explorer” in the online Simulink help
for more information.

Configuration Sets
This release introduces configuration sets. A configuration set is a named set
of values for simulation parameters, such as solver type and simulation start
or stop time. Every new model is created with a configuration set that is
initialized from a global default configuration set. You can create additional
configuration sets for a given model and designate any of them as the active
set with the click of a mouse button. See “Configuration Sets” in the online
Simulink documentation for more information.

Configuration Parameters Dialog Box
This release replaces the Simulation Parameters dialog box with the
Configuration Parameters dialog box. The Configuration Parameters
dialog box allows you to set a model’s active configuration parameters. You
can also use the Model Explorer to set the active configuration parameters
as well as inactive parameters. See “Configuration Parameters Dialog Box”
for more information.

Model Referencing
This release introduces model referencing, a feature that lets a model include
other models as modular components. You include other models in a model

165

Simulink® Release Notes

by using Model blocks to reference the included models. Like subsystems,
model referencing allows you to organize large models hierarchically, with
Model blocks representing major subsystems. However, model referencing
has significant advantages over subsystems in many applications. The
advantages include:

• Modular development

You can develop the referenced model independently from the models in
which it is used.

• Inclusion by reference

You can reference a model multiple times in another model without having
to make redundant copies. Multiple models can also reference the same
model.

• Incremental loading

The referenced model is not loaded until it is needed, speeding up model
loading.

• Incremental code generation

Simulink and Real-Time Workshopproducts create binaries to be used in
simulations and standalone applications to compute the outputs of the
included blocks. Code generation occurs only for models that have changed.

See “Referencing a Model” in the online Simulink documentation for more
information. For a demonstration of a way to automate conversion of an
existing model’s subsystems to model references, execute mdlref_conversion
at the MATLAB Command Line. For a summary of limitations on the
use of model referencing in this release, see “Simulink Model Referencing
Limitations”.

Model Workspaces
In this release, Simulink software provides each model with its own
workspace for storing data. Models can access data in their own workspaces
as well as data in models that reference them and in the base (i.e., MATLAB)
workspace. Model workspaces allow you to create data for one model without
fear of inadvertently altering another model’s data. See “Using Model
Workspaces” for more information.

166

Version 6.0 (R14) Simulink® Software

Implicit Fixed-Step Solver
This release includes a new fixed-step solver named ode14x. This is an
implicit, extrapolating fixed-step solver whose extrapolation order and
number of Newton’s method iterations can be specified via Simulink
configuration parameters. The ode14x solver is faster than Simulink explicit
fixed-step solvers for certain types of stiff systems that require a very small
step size to avoid unstable solutions.

The Signal and Scope Manager
The Signal and Scope Manager is a new Simulink feature that enables you to
globally manage signal generators and viewers. See “Introducing the Signal
and Scope Manager” in the online Simulink help for more information.

Data Object Type Enhancements
This release introduces the following types of objects for specifying the
properties of model signals and parameters (i.e., model data):

Object Class Purpose

Simulink.AliasType Specify another name for a data
type.

Simulink.NumericType Define a custom data type.
Simulink.StructType Define a data structure, i.e., a type

of signal or parameter comprising
data of different types.

Simulink.Bus Define a signal bus.

See “Working with Data Types” and “Simulink Classes” in the Simulink
online documentation for more information.

This release also adds the following properties to Simulink.Signal class:

• Dimensions

• SampleTime

• SamplingMode

167

Simulink® Release Notes

• DataType

• Complexity

Simulink software checks the consistency of these properties against the
values set on the ports/dwork elements associated with each signal object.

Note If an attribute is set as auto / -1 (not specified), then no consistency
checking is done.

Block Enhancements
This release includes the following block-related enhancements.

New Blocks
This release introduces the following blocks.

• The Signal Conversion block enables you to convert virtual buses to
nonvirtual buses, and vice versa.

• The Environment Controller block’s output depends on whether the model
is being used for simulation or code generation.

• The Bias block adds a specified bias value to its input and outputs the
result.

• Embedded MATLAB Function block enables you to include MATLAB
code in models from which you intend to generate code, using Real-Time
Workshop software.

• The Model block allows you to include other models in a model (see “Model
Referencing” on page 165).

Fixed-Point-Capable Blocks
This release adds fixed-point data capability to many existing Simulink blocks
and includes fixed-point blocks previously available only with the Fixed-Point
Blockset. To use the fixed-point data capability of these blocks, you must
install the Simulink Fixed Point product on your system. See “Fixed-Point
Data” in the online Simulink documentation for more information.

168

Version 6.0 (R14) Simulink® Software

Port Values Display
This release of Simulink software can display block outputs as data tips on a
block diagram while a simulation is running. This allows you to observe block
outputs without having to insert Scope or Display blocks. See “Displaying
Block Outputs” in the online Simulink documentation for more information.

User-Specifiable Sample Times
This release expands the number of blocks with user-specifiable sample times
to include most built in Simulink blocks. In previous releases, most builtin
blocks inherited their sample times directly or indirectly from the blocks to
which they were connected. In this release, most blocks continue to inherit
their sample times by default. However, you can override this default setting
in most cases to specify a nondefault sample time, using either the block’s
parameter dialog box or a set_param command. This avoids the need to use
Signal Specification blocks to introduce nondefault sample times at specific
points in a model.

Improved Initial Output Handling
In previous Simulink releases, the Constant, Initial Condition, Unit Delay,
and other blocks write out their initial output values in their mdlStart
method. This behavior can cause unexpected block output initialization. For
example, if a Constant block in an enabled subsystems feeds an Outport block
whose IC is set to [], the Constant value appears even when the enabled
subsystem is not enabled.

It is desirable in some cases for a block to write its initial output value in
its mdlStart method. For example, discrete integrator block may need
to read the value from its external IC port to setting the initial state in
mdlInitialize method.

This release addresses these problems by implementing a hand-shaking
mechanism for handling block initial output. Under this mechanism, a block
only computes its initial output value when it is requested by its downstream
block. For example, if a Constant block feeds the external IC port of a Discrete
Integrator block, the discrete integrator block’s external IC port requests the
Constant block to compute its initial output value in its mdlStart method.

169

Simulink® Release Notes

Bus-Capable Nonvirtual Blocks
In previous releases, Simulink software propagated buses only through
virtual blocks, such as subsystems. In this release, Simulink software also
propagates buses through the following nonvirtual blocks:

• Memory

• Merge

• Switch

• Multiport Switch

• Rate Transition

• Unit Delay

• Zero-Order Hold

Some of these blocks impose constraints on bus propagation through them.
See the documentation for the individual blocks for more information.

Duplicate Input Ports
This release allows you to create duplicates of Inport blocks in a model. A
model can contain any number of duplicates of an original Inport block. The
duplicates are graphical representations of the original intended to simplify
block diagrams by eliminating unnecessary lines. The duplicate has the same
port number, properties, and output as the original. Changing a duplicate’s
properties changes the original’s properties and vice versa. See the Inport
block documentation for more information.

Inport/Outport Block Display Options
Inport and Outport blocks can now optionally display their port number,
signal name, or both the number and the name. See the online documentation
for the Inport and Outport blocks for more information.

Zero- and One-Based Indexing
In this release, some blocks that use indices provide the option for indices to
start at 0 or 1. The default is one-based indexing to maintain compatibility

170

Version 6.0 (R14) Simulink® Software

with previous releases. Blocks that now support zero- or one-based indexing
include

• Selector

• For Iterator

• Assignment

Runtime Block API
This release introduces an application programming interface (API) that
enables programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. See “Accessing Block Data During Simulation” for more
information.

Command-Line API to Signal Builder Block
This release provides a command, signalbuilder, for creating and accessing
Signal Builder blocks in a model.

Signal Enhancements
This release includes the following signal-related enhancements.

Test Point Indicators
This release can optionally use indicators on a block diagram to indicate
signals that are test points. See “Displaying Test Point Indicators” in the
online documentation for more information.

Signal Logging
This release allows you to log signal data during simulation. See “Logging
Signals” for more information.

171

Simulink® Release Notes

Internal Signal Structures Revamped
This release revamps the sigmap, siglists and sigregions structures to
support signal logging and other signal-related enhancements.

Compatibility Considerations. S-functions created prior to Version 6 (R14).
that access the sigmap, siglists and sigregions structures might generate
segmentation violations. To avoid this, recompile the S-functions in Version 6
(R14) or subsequent releases.

Edit-Time Signal Label Propagation
In this release, when you change a signal label, Simulink software
automatically propagates the change to all downstream instances of the label.
You do not have to update the diagram as in previous releases.

Bus Editor
The new Bus Editor enables you to create and modify bus objects in the
Simulink base (MATLAB) workspace. See "Bus Editor" for more information.

Rate Transition Enhancements
This release provides the following enhancements to the handling of rate
transitions in models.

Rate Transition Block Determines Transition Type Automatically
The Rate Transition block now determines the type of transition that occurs
between the source and destination block (i.e., fast-to-slow or slow-to-fast).
Therefore, this release eliminates the transition type option on the block’s
parameter dialog.

Automatic Insertion of Rate Transition Blocks
This release introduces an option to insert hidden rate transition blocks
automatically between blocks that operate at different rates. This saves you
from having to insert rate transition blocks manually in order to avoid illegal
rate transitions. The inserted blocks are configured to ensure that data is
transferred deterministically and that data integrity is maintained during the
transfer. See “Automatically handle rate transition for data transfer” in the
online Simulink documentation for more information.

172

Version 6.0 (R14) Simulink® Software

User-Specifiable Output Sample Time
The Rate Transition Block’s parameter dialog box contains a new parameter:
Output Port Sample Time. This parameter allows you to specify the output
rate to which the input rate is converted. If you do not specify a rate, the
Rate Transition block inherits its output rate from the block to which its
output is connected.

Execution Context Enhancements
This releases introduces the following enhancements to execution context
propagation.

Enabling Execution Context Propagation
This release allows you to specify whether to permit execution contexts to be
propagated across a conditionally executed subsystem’s boundary. See the
documentation for the Subsystem block for more information.

Execution Context Indicator
This release optionally displays a bar across each input port and output port
of a subsystem that does not permit propagation of the subsystem’s execution
context. To enable this option, select Block Displays->Execution context
indicator from the model editor’s Format menu.

Algebraic Loop Minimization
This release can eliminate some types of algebraic loops involving atomic or
enabled subsystems or referenced models. See “Eliminating Algebraic Loops”
in the online Simulink documentation for more information.

Level-2 M-File S-Functions
This release introduces a new application programming interface (API) for
creating custom Simulink blocks based on M code. In contrast to the previous
API, designated Level 1, which supported a restricted set of block features,
the new API, designated Level 2, supports most standard Simulink block
features, including support for matrix signals and nondouble data types. See
“Writing Level-2 M-File S-Functions” in the online documentation for more
information.

173

Simulink® Release Notes

Panning Model Diagrams
You can now use the mouse to pan around model diagrams that are too large
to fit in the model editor’s window. To do this, position the mouse over the
diagram and hold down the left mouse button and the P or Q key on the
keyboard. Moving the mouse now pans the model diagram in the editor
window.

MATLAB Data Type Conversions
Release 14 introduces changes in the way MATLAB handles conversions from
double to standard MATLAB nondouble data types (e.g., int8, uint8, etc.) and
from one nondouble data type to another.

Compatibility Considerations
Previous releases of MATLAB use truncation to convert a floating point value
to an integer value, e.g., int8(1.7) = 1. Release 14 uses rounding, e.g.,
int8(1.7) = 2. See “New Nondouble Mathematics Features" in the Release
14 MATLAB Release Notes for a complete description of the changes in data
type conversion algorithms introduced in Release 14.

Such changes could affect the behavior of models that rely on nondouble
data type conversions of signals and block parameters. For example, a Gain
parameter entered as int8(3.7) ends up as 4 in this release as opposed to 3
in previous releases and this difference could change the simulation results.
Therefore, if the simulation results for your model differ in Release 14 from
previous releases, you should investigate whether the differences result from
the changes in data type conversion algorithms, and, if so, modify your model
accordingly.

Signal Object Resolution Changes
In previous releases, Simulink software attempted to resolve every named
signal to a Simulink.Signal object of the same name in the MATLAB
workspace.

Compatibility Considerations
In this release, Simulink software lets you specify whether a named signal or
discrete state should resolve to a signal object, using the Signal Properties

174

Version 6.0 (R14) Simulink® Software

dialog box and the State Properties of blocks that have discrete states, such
as the Discrete-Time Integrator. By default, Simulink software attempts to
resolve every named signal or state to a signal object regardless of whether
the model specifies that the signal or state should resolve to a signal object. If
the model does not specify resolution for a signal or state and it does resolve,
Simulink software displays a warning. You can also specify that Simulink
software attempt to resolve all named signals or states without warning of
implicit resolutions (the behavior in previous releases) or that it only resolve
signals and states that the model specifies should resolve (explicit resolution).

Explicit signal resolution is the recommended approach for doing signal
resolution as it ensures that signals that should be resolved are resolved and
signals that should not resolve are not resolved. This release includes a script
that facilitates converting models that use implicit signal resolution to use
explicit resolution. Enter help disableimplicitsignalresolution at the
MATLAB command line for more information.

Loading Models Containing Non-ASCII Characters
Release 14 of MATLAB introduces Unicode support. This enhancement allows
MATLAB and Simulink products to support character sets from different
encoding systems.

Compatibility Considerations
This change causes Simulink software to behave differently from previous
releases when loading a model containing non-ASCII characters. Previous
releases load such models regardless of whether the non-ASCII characters
are compatible with the current encoding system used by MATLAB. In
Release 14, Simulink software checks the characters in the model against the
current encoding setting of MATLAB. If they are incompatible, Simulink
software does not load the model. Instead, it displays an error message that
prompts you to change to a compatible MATLAB encoding setting, using
the slCharacterEncoding command.

175

Simulink® Release Notes

Change in Sample Time Behavior of Unary Minus
Block
Release 14 changes the sample time behavior of the Unary Minus block.

Compatibility Considerations
In Release 13, if the sample time of this block’s input is continuous, the
sample time of the block and its output is fixed in minor time step. This
block is fixed in minor step and the output signal is fixed in minor step when
the input is a continuos sample time signal. In Release 14, if the input is
continuous, the block and output sample time are continuous also.

Initial Output of Conditionally Executed Subsystems
In this release, the initial output is undefined if the Initial output port
specifies [].

Compatibility Considerations
In previous releases, if the Initial output parameter of an Outport block in a
conditionally executed subsystem specified [] as the initial output, the initial
output of this port was the initial output of the block driving the Outport block.

Execution Context Default Changes
In R14, execution context propagation does not cross a conditionally executed
subsystem boundaries by default.

Compatibility Considerations
In R13 SP1 and DACORE2, execution contexts propagate across conditionally
executed subsystem boundaries by default. You need to choose the Propagate
execution context across subsystem boundary option in the subsystem’s
parameter dialog box.

Simulink Accelerator Switch Blocks Can Abort Code
Generation
In Release 13, accelerator code generation aborted for the case of a Switch
block configured with the Criteria for passing first input set to u2 ~=0,

176

Version 6.0 (R14) Simulink® Software

with vector inputs of width greater than the RollThreshold (5). Code
generation aborted with the following message:

%exit directive: Real-Time Workshop Fatal in block: "/B_1_28",
block type "Switch": No parameters to roll.

This release fixes the problem.

177

Simulink® Release Notes

Version 5.1 (R13SP1) Simulink Software
This table summarizes what’s new in V5.1 (R13SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed Bugs Printable Release
Notes: PDF

V5.1 product
documentation

New features and changes introduced in this version are:

• “Sample Time Parameters Exposed” on page 178

• “Enhanced Debugger” on page 179

• “Context-Sensitive Data Typing of Tunable Parameters” on page 181

• “Conditional Execution Behavior” on page 183

• “Function-Call Subsystem Enhancements” on page 186

• “External Increment Option Added To For Iterator Block” on page 186

• “Performance Improvements” on page 187

Sample Time Parameters Exposed
Sample time parameters of most Simulink built-in library blocks have been
exposed to the user. That is, the sample time parameter of these blocks has
been made accessible via the block’s dialog box or set_param. This means that
most nonvirtual blocks in the Simulink library have a user settable sample
time parameter. Prior to this exposure, these blocks had an internal inherited
sample time with the exception of the Constant block, which had a constant
(inf) sample time. By providing access to the sample time parameter, you
no longer need to use the Signal Specification block to apply a nondefault
sample times to these blocks.

178

file:///B:/matlab/doc/src/bugfixes_13SP1.html%23Simulink
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/simulink/rn.pdf
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/simulink/simulink.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/simulink/simulink.html

Version 5.1 (R13SP1) Simulink® Software

Enhanced Debugger
This release includes enhancements to the Simulink debugger that enable
you to step through a simulation showing information not visible in previous
releases. The enhancements include

• An expanded command set that now enables you to step a simulation
method by method. Previous releases showed only output methods.

• An expanded toolbar that gives you push button access to new debugger
commands

• A Simulation Loop pane that shows the current state of the simulation
at a glance

Note Methods are functions that Simulink software uses to solve a model
at each time step during the simulation. Blocks are made up of multiple
methods. "Block execution" in this documentation is shorthand notation
for "block methods execution." Block diagram execution is a multi-step
operation that requires execution of the different block methods in all the
blocks in a diagram at various points during the process of solving a model
at each time step during simulation, as specified by the simulation loop.

These changes allow you to pinpoint problems in your model with greater
accuracy. The following sections briefly describe the debugger enhancements.
See the Simulink documentation for a detailed description of the new features
and their usage.

Enhanced Debugger Commands
This release enhances the following debugger commands:

• step

In previous releases, this command advanced the simulation from the
current block Outputs method over any intervening methods to the next
block Outputs method. In this release, step advances the simulation
method by method, or into, over, or out of methods, from the first method
executed during the simulation to the last. This allows you to determine
the result of executing any model, subsystem, or block method executed

179

Simulink® Release Notes

during the simulation, including block Outputs, Update, and Derivative
methods as well as solver methods.

• next

In previous releases, this command advanced the simulation to the first
block Outputs method executed during the next time step. In this release,
it advances the simulation over the next method to be executed, executing
any methods invoked by the next method.

• break

In previous releases, this command set a breakpoint at the Outputs method
of a specified block. In the current release, it sets a breakpoint at any
specified method or on all the methods of a specified block.

• bafter

In previous releases, this command set a breakpoint after the Outputs
method of a specified block. In this release, it sets a breakpoint after a
specified method or after each of the methods of a specified block.

• minor

In previous releases, this command enabled or disabled stepping across
Outputs methods in minor time steps. In the current release, it enables or
disables in minor time steps breakpoints set by block for all methods.

New Debugger Commands
This release introduces the following debugger commands:

• elist

Displays the method execution lists for the root system and the nonvirtual
subsystems of the model being debugged.

• etrace

Causes the debugger to display a message in the MATLAB Command
Window every time a method is entered or exited while the simulation
is running.

• where

Displays the call stack of the method at which the simulation is currently
suspended.

180

Version 5.1 (R13SP1) Simulink® Software

Enhanced Debugger Toolbar
The debugger toolbar has been expanded to include buttons for the following
versions of the step command: step into, step over, step out, and step
top.

Simulation Loop Pane
This release adds a Simulation Loop pane to the debugger GUI that
displays by method the point in the simulation loop at which the simulation is
currently suspended. The debugger updates the pane after each step, next,
or continue command, enabling you to determine at a glance the point to
which the command advanced the simulation. The pane also allows you to
set breakpoints on simulation loop methods and to navigate to the block at
whose method the simulation is currently suspended.

Sorted List Pane
This release renames the Block Execution List pane of the debugger GUI to
the Sorted List pane to reflect more accurately what the pane contains. The
Sorted List pane displays for the root system and each nonvirtual subsystem
of the model being debugged a sorted list of the subsystem’s blocks. The sorted
lists enable you to determine the block IDs of a model’s blocks.

Context-Sensitive Data Typing of Tunable Parameters
In this release, if a model’s Inline parameters setting is selected, Simulink
software regards the data type of a tunable parameter as context-sensitive
if the data type is not specified. In particular, this release allows the block
that uses the parameter to determine the parameter’s data type. By contrast,
Release 13 regards the type of the parameter to be double regardless of
where it is used.

Change in Simulink Behavior
This change affects the behavior of Simulink software in two cases. First,
in Release 13, if a tunable parameter’s data type is unspecified and a block
that uses it needs to convert its type from double to another type, Simulink
software by default stops and displays an error message when you update
or simulate the model. The error alerts the user to the fact that the type
conversion is a downcast and hence could result in a loss of precision. In

181

Simulink® Release Notes

this release, by contrast, a typecast never occurs because the block itself
determines the appropriate type for the parameter. Hence, in this release,
Simulink software never generates a downcast error for tunable parameters
of unspecified data type.

The following model illustrates the difference in behavior between this release
and Release 13 in this case.

Assume that the model’s Inline parameters setting is selected (thereby
making parameters nontunable by default) and the model declares k as a
tunable parameter on the Model Configuration Parameters dialog box.
Also assume that the user has specified the value of k on the MATLAB
command line as follows:

>> k = 5.7

In other words, the user has specified a value for k but not a data type. In this
case, this release regards the type of k to be int16, the type required by the
Gain block to compute its output. By contrast, Release 13 regards the type of
k to be double and hence assumes that the Gain block must downcast k to
compute its output. Release 13 therefore stops and displays an error message
by default in this case when you update or simulate the model.

The behavior of this release also differs from Release 13 in the case where
a model uses a tunable parameter of unspecified data type in more than
one place in the model and the required data type differs in different
places. This case creates a conflict under the assumption that the block in
which the parameter is used determines the parameter’s data type. This
assumption requires Simulink software to assign different data types to the
same parameter, which is impossible. Therefore, in this release, Simulink
software signals an error to alert the user to the conflict. By contrast, in
Release 13, Simulink software does not throw an error because the data type
of the parameter is double regardless of where it is used. You can avoid

182

Version 5.1 (R13SP1) Simulink® Software

the conflicting data types error in Release 13SP1 by specifying the tunable
parameter’s data type.

The following model illustrates this change in behavior.

The two Gain blocks in this model both use k, a tunable parameter of
unspecified type, as their gain parameter. Computing the outputs of the
blocks requires that the gain parameter be of types int16 and int32,
respectively. In Release 13, Simulink software regards the data type of k to be
double and the Gain blocks use typecasts to convert k to the required type
in each case. Simulink software simulates the model without error (if the
parameter downcasting diagnostic is set to none or warning). By contrast,
this release signals an error because this model requires k to be both type
int16 and int32, an impossibility. You can avoid this error by explicitly
specifying k’s data type; for example:

k = int16(6);

Conditional Execution Behavior
This release augments the conditional input branch behavior of the previous
release with a more generalized behavior called conditional execution (CE)
behavior. The new behavior speeds simulation of models by eliminating
unnecessary execution of blocks connected to Switch, Multiport Switch, and
conditionally executed blocks.

183

Simulink® Release Notes

Note The Simulink documentation has not yet been updated to reflect the
new behavior. Consequently, the remainder of this release note provides a
detailed explanation of how the behavior works.

As with the conditional input branch behavior available in the previous
release, the new behavior ensures that the block methods that make up an
input branch of a Switch or Multiport Switch block execute only when the
model selects the corresponding switch input. In addition, the new behavior
option generalizes this behavior to conditionally executed subsystems.
Consider, for example, the following model.

Simulink software computes the outputs of the Constant block and Gain
Block only when the Enabled Subsystem executes (i.e., at time steps 0, 4,
8, and so on). This is because the output of the Constant block is required
and the input of the Gain block changes only when the Enabled Subsystem
executes. When CE behavior is off, Simulink software computes the outputs
of the Constant and Gain blocks at every time step, regardless of whether
the outputs are needed or change.

In this example, Simulink software regards the Enabled Subsystem as
defining an execution context for the Constant and Gain blocks. Although the
blocks reside in the model’s root system, their block methods are executed as
if the blocks reside in the Enabled Subsystem.

In general, Simulink software defines an execution context as a set of blocks
to be executed as a unit. At model compilation time, Simulink software
associates an execution context with the model’s root system and with each of

184

Version 5.1 (R13SP1) Simulink® Software

its nonvirtual subsystems. Initially, the execution context of the root system
and each nonvirtual subsystem is simply the blocks that it contains. Simulink
software examines whether a block’s output is required only by a conditionally
executed subsystem or whether the block’s input changes only as a result
of the execution of a conditionally executed subsystem. If so, Simulink
software moves the block into the execution context of the conditionally
executed system. This ensures that the block methods are executed during
the simulation loop only when the corresponding conditionally executed
subsystem executes.

Note This behavior treats the input branches of a Switch or Multiport Switch
block as invisible, conditionally executed subsystems, each of which has its
own execution context that is enabled only when the switch’s control input
selects the corresponding data input. As a result, switch branches execute
only when selected by switch control inputs.

To determine the execution context to which a block belongs, select Sorted
order from the model window’s Format menu. Simulink software displays
the sorted order index for each block in the model in the upper right corner
of its icon. The index has the format s:b, where s specifies the subsystem to
whose execution context the block, b, belongs.

Simulink software also expands the sorted order index of conditionally
executed subsystems to include the system ID of the subsystem itself in curly
brackets as illustrated in the following figure.

185

Simulink® Release Notes

In this example, the sorted order index of the enabled subsystem is 0:1{1}.
The 0 indicates that the enable subsystem resides in the model’s root system.
The first 1 indicates that the enabled subsystem is the second block on
the root system’s sorted list (zero-based indexing). The 1 in curly brackets
indicates that the system index of the enabled subsystem itself is 1. Thus any
block whose system index is 1 belongs to the execution context of the enabled
subsystem and hence executes when it does. For example, the constant block’s
index, 1:0, indicates that it is the first block on the sorted list of the enabled
subsystem, even though it resides in the root system.

Function-Call Subsystem Enhancements
This releases adds the following function-call subsystem-related parameters
to the Trigger block:

• The States when enabling parameter specifies whether a function-call
enable trigger causes Simulink software to reset the states of the subsystem
containing this Trigger block to their initial values.

• The Sample time type parameter specifies whether the function-call
subsystem containing the Trigger block is invoked periodically.

• The Sample time parameter species the rate at which the function-call
subsystem containing the Trigger block is invoked.

See the Trigger block documentation for additional information.

External Increment Option Added To For Iterator
Block
This release adds an external increment option to the For Iterator block.
Selecting this option causes the block to display an input port for the external
increment. The value of this input port at the current time step is used as
the value of the block’s iteration variable at the next iteration. You can select
this option by checking the Set next i (iteration variable) externally option
on the block’s parameter dialog box or by setting its ExternalIncrement
parameter to 'on'. See the documentation for the For Iterator block for more
information.

186

Version 5.1 (R13SP1) Simulink® Software

Note This enhancement is not backward compatible with R13. Loading
models containing For Iterator blocks with this option selected in R13
produces a warning message. Simulating such models in R13 can produce
incorrect results.

Performance Improvements
Release R13SP1 includes many performance improvements that were
designed to particularly benefit large models (containing on the order of
100,000 blocks and/or more than a few megabytes of parameter data). Speed
has been improved and memory consumption reduced for model loading,
compilation, code generation, and closing. The various improvements span
the Simulink, Stateflow, and Real-Time Workshop products and include:

• Increased speed and decreased memory consumption through improved
incremental loading of library blocks that contain Stateflow blocks.

• Increased speed and decreased memory usage through the introduction of a
redesigned Signal Specification block. Models saved with the old version
of the Signal Specification block should automatically start using the new
block when you load the model with this release.

• Increased speed in datatype and sample time propagation during the
compile phase of certain models.

• Increased speed in the Stateflow build process for both simulation and
Real-Time Workshop targets.

• Increased speed and decreased memory consumption when using N-D
Lookup Table blocks that utilize large parameter data.

• Increased speed and decreased memory usage when generating code with
Real-Time Workshop software or Simulink Accelerator for models with
large parameter sets. This improvement involves writing out parameter
references instead of the entire parameter data into the Real-Time
Workshop file for parameters whose size exceeds 10 elements. The
parameter values for such references are retrieved directly from Simulink
software during the code generation process.

• Decreased memory usage during various phases of code generation process
in Real-Time Workshop software or Simulink Accelerator.

187

Simulink® Release Notes

• Improved speed during model close through streamlining of the close
process.

Other minor improvements have also been made to improve performance.
Your models should experience corresponding speed and memory
improvements, to the extent that these changes apply to your specific models
and usage scenarios.

188

Version 5.0.1 (R13.0.1) Simulink® Software

Version 5.0.1 (R13.0.1) Simulink Software
This table summarizes what’s new in V5.0.1 (R13.0.1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed Bugs No

New features and changes introduced in this version are

Tunable Parameters for Unified Fixed-Point Blocks

Compatibility Considerations
Unified fixed-point blocks with tunable parameters have compatibility
problems under certain conditions in Release 13. The problem arises only if
a tunable parameter is mapped to a built-in integer or single data type.
When tunable parameters are mapped to built-in integers or single, the
code generated by Real Time Workshop will be different for unified blocks
than it was for Fixed-Point Blockset blocks in prior releases. There are no
compatibility problems if a tunable parameter maps to a nonbuilt-in data
type, such as a scaled fixed-point integer.

Tunable parameters are entered in a Simulink model by specifying the name
of a MATLAB variable in a block’s dialog. This variable can be either a plain
MATLAB variable or a Simulink parameter object. In either case, a numerical
value will be defined for this tunable parameter by doing an assignment in
MATLAB. MATLAB supports several numerical data types including the
eight Simulink built-in numerical data types: double, single, int8, uint8,
int16, uint16, int32, and uint32. One of these eight data types can be used
when a value is defined for a MATLAB variable. The effect of the data type of
the MATLAB variable is significantly different depending on how the tunable
parameter is used in Simulink software.

189

file:///B:/matlab/doc/src/bugfixes_13plus.html%23Simulink

Simulink® Release Notes

For Simulink built-in blocks, the legacy rule is to fully respect the data type
used for the value of a MATLAB variable. Whatever data type is used in
MATLAB when assigning a value to a variable is also be used when declaring
that parameter in code generated by Real-Time Workshop software. The
use of that parameter by a block may require the value to be represented
using a different data type. If so, additional code is generated to convert the
parameter every time it is used by the block. To get the most efficient code
for a given block, the value of the MATLAB variable should use the same
data type as is needed by the block.

For Fixed-Point Blockset blocks, the legacy rule is to expect no data type
information from the MATLAB variable used for the tunable parameter.
A fundamental reason for this is that the MATLAB product does not have
native support for fixed-point data types and scaling, so the Simulink built-in
legacy rule could not be directly extended to the general fixed-point case.
Many fixed-point blocks automatically determine the data type and scaling
for parameters based on what leads to the most efficient implementation of a
given block. However, certain blocks such as Constant, as well as blocks that
use tunable parameters in multiplication, do not imply a unique best choice
for the data type and scaling of the parameter. These blocks have provided
separate parameters on their dialogs for entering this information.

In Release 13, many Simulink built-in blocks and Fixed-Point Blockset
blocks were unified. The Saturation block is an example of a unified block.
The Saturation block appears in both the Simulink Library and in the
Fixed-Point Blockset Library, but regardless of where it appears it has
identical behavior. This identical unified behavior includes the treatment
of tunable parameters. The dissimilarity of the legacy rules for tunable
parameters has lead to a shortcoming in the unified blocks. Unified blocks
obey the Simulink legacy rule sometimes and the Fixed-Point Blockset legacy
rule at other times. If the block is using the parameter with built-in Simulink
data types, then the Simulink legacy rule applies. If the block is using the
parameter with nonbuilt-in data types, such as scaled fixed-point data types,
then the Fixed-Point Blockset legacy rule applies. This gives full backwards
compatibility with one important exception.

The backwards compatibility issue arises when a model created prior to
R13 uses a Fixed-Point Blockset block with a tunable parameter, and the
data type used by the block happens to be a built-in data type. If the block
is unified, it will now handle the parameter using the Simulink legacy rule

190

Version 5.0.1 (R13.0.1) Simulink® Software

rather than the Fixed-Point Blockset legacy rule. This can have a significant
impact. For example, suppose the tunable parameter is used in a Saturation
block and the data type of the input signal is a built-in int16. In prior
releases, the Fixed-Point Blockset block would have declared the parameter
as an int16. For legacy fixed-point models, the MATLAB variables used for
tunable parameters invariably gave their value using floating-point double.
The unified Saturation block would now declare the tunable parameter in the
generated code as double. This has several negatives. The variable takes up
six more bytes of memory as a double than as an int16. The code for the
Saturation block now includes conversions from double to int16 that execute
every time the block executes. This increases code size and slows down
execution. If the design was intended for use on a fixed-point processor, the
use of floating-point variables and floating-point conversion code is likely to be
unacceptable. It should be noted that the numerical behavior of the blocks is
not changed even though the generated code is different.

For an individual block, the backwards compatibility issue is easily solved.
The solution involves understanding that the Simulink legacy rule is being
applied. The Simulink legacy rule preserves the data type used when
assigning the value to the MATLAB variable. The problem is that an
undesired data type will be used in the generated code. To solve this, you
should change the way you assign the value of the tunable parameter.
Determine what data type is desired in the generated code, then use an
explicit type cast when assigning the value in MATLAB. For example, if int16
is desired in the generated code and the initial value is 3, then assign the
value in MATLAB as int16(3). The generated code will now be as desired.

A preliminary step to solving this issue with tunable parameters is identifying
which blocks are affected. In most cases, the treatment of the parameter will
involve a downcast from double to a smaller data type. On the Diagnostics
tab of the Simulation Parameters dialog is a line item called Parameter
downcast. Setting this item to Warning or None will help identify the blocks
whose tunable parameters require reassignment of their variables.

In R13, the solution described above did not work for three unified blocks:
Switch, Look-Up Table, and Lookup Table (2-D). These blocks caused errors
when the value of a tunable parameter was specified using integer data types.
This was a false error and has been removed. Using an explicit type cast when
assigning a value to the MATLAB variable now solves the issue of generating
code with the desired data types.

191

Simulink® Release Notes

Version 5.0 (R13) Simulink Software
This table summarizes what’s new in V5.0 (R13):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed Bugs No

New features and changes introduced in this version are organized by these
topics:

• “Block Enhancements” on page 192

• “Simulation Enhancements” on page 197

• “Modeling Enhancements” on page 198

• “Platform Limitations for HP and IBM” on page 201

Note Simulink 5.0 incorporates changes introduced in Simulink 4.1.1, which
was initially released in Web-downloadable form after Release 12.1 was
released, but before Release 13. These Release Notes describe those changes,
as well as other changes introduced after Version 4.1.1.

Block Enhancements
Simulink 5.0 includes the following block-related enhancements:

• “Fixed-Point Block Library” on page 193

• “Lookup Table Editor” on page 194

• “Model Verification Block Library” on page 194

• “Signal Builder Block” on page 194

192

file:///B:/matlab/doc/src/bugfixes_13.html%23Simulink

Version 5.0 (R13) Simulink® Software

• “DocBlock” on page 195

• “Rate Transition Block” on page 195

• “Block Library Reorganization” on page 195

• “Model Linearization Blocks” on page 195

• “Data Store Read/Write Block Navigation” on page 195

• “Enhanced S-Function Builder” on page 195

• “Miscellaneous Block Enhancements” on page 196

Fixed-Point Block Library
Simulink software now includes the latest version (4.0) of the Fixed-Point
Blockset. The library was previously available only as a separately installed
option. You must have a Fixed-Point Blockset license to run models
containing fixed-point blocks in fixed-point mode. However, you can open,
edit, and run such models in floating-point mode, regardless of whether
you have a Fixed-Point Blockset license. This change facilitates sharing of
fixed-point models in large organizations by eliminating the need for all users
in a group to have a Fixed-Point Blockset license in order to run or modify
models containing fixed-point blocks. See “Installation and Licensing” in the
Simulink Fixed-Point Blockset release notes for information on how to run
models containing fixed-point blocks when you do not have a Fixed-Point
Blockset license.

This release also unifies many core Simulink and Fixed-Point Blockset blocks
that have similar functionality. For example, the Sum block in the Simulink
Math Operations library and the Sum block in the Fixed-Point Blockset Math
library are now the same block. As a result, you no longer have to replace any
of the unified blocks when switching from built-in to fixed-point data types and
vice versa. You can change the data types of the blocks simply by selecting the
appropriate settings on their parameter dialog boxes. See “Unified Simulink
and Fixed-Point Blockset Blocks” in the Simulink Fixed-Point Blockset release
notes for more information and for a list of blocks that this release unifies.

193

Simulink® Release Notes

Note When you open an existing model, Simulink 5.0 updates the model to
use the unified version of a standard or Fixed-Point Blockset block wherever
an instance of that block occurs in the model. Simulink software sets the
parameters of the unified block to preserve the behavior of the original block.
For example, wherever your existing model contains a Sum block from the
Fixed-Point Blockset library, Simulink software replaces the Fixed-Point
Blockset version with a unified Sum block set to operate as a fixed-point block.
This automatic updating ensures that your existing model runs the same in
Simulink 5.0 as it did in previous releases of Simulink software.

Lookup Table Editor
The Lookup Table Editor allows you to find and edit the contents of look-up
tables used by look-up table blocks. See “Lookup Table Editor” in the online
Simulink documentation for more information.

Model Verification Block Library
Simulink software now includes a library of model verification blocks that
enable you to create self-validating models. For example, you can use the
blocks to test that signals do not exceed specified limits during simulation.
When you are satisfied that a model is correct, you can turn error-checking
off by disabling the model verification blocks. You do not have to physically
remove them from the model. The library includes set of blocks preconfigured
to check for common types of errors, for example, signals that exceed a
specified upper or lower bound. See “Model Verification” in the online
Simulink documentation for more information.

Signal Builder Block
The new Signal Builder block allows you to create interchangeable groups of
signal sources and quickly switch the groups into and out of a model. The
Signal Builder block’s signal editor allows you to define the waveforms of the
signals output by the block. You can specify any waveform that is piecewise
linear. Signal groups can greatly facilitate testing a model, especially when
used in conjunction with Simulink assertion blocks and the optional Model
Coverage Tool. See “Working with Signal Groups” for more information.

194

Version 5.0 (R13) Simulink® Software

DocBlock
The new DocBlock block allows you to create text that documents a model
and save that text with the model.

Rate Transition Block
Simulink software now includes a Rate Transition block that allows you
to specify the data transfer mechanism between two rates of a multirate
system. See Rate Transition in the online Simulink block reference for more
information.

Block Library Reorganization
The Simulink Block Library has been reorganized to simplify accessing blocks
with related functionality.

Model Linearization Blocks
This release introduces two blocks that generate linear models from a
Simulink model at various times during a simulation. The Time-Based
Linearization block generates linear models at specified time steps. The
Trigger-Based Linearization block generates models when triggered by events
appearing at its trigger port.

Data Store Read/Write Block Navigation
This release allows you to navigate among the blocks that define and access
data stores by clicking on the names of associated blocks listed in the dialog
box of each block. See Data Store Memory, Data Store Read, and Data Store
Write for more information.

Enhanced S-Function Builder
The S-Function Builder has been enhanced to generate S-functions with the
following additional capabilities

• Multiple ports

• Support for all builtin datatypes

• Support for 2-D signals

195

Simulink® Release Notes

• Support for complex signals

See “Building S-Functions Automatically” for more information.

Miscellaneous Block Enhancements
This release introduces the following enhancements to Simulink blocks.

Math Function Block. This release significantly speeds up the simulation
of the Math Function block’s exponential math functions. All functions now
support both double- and single-precision floating-point inputs and outputs.
The mod and rem functions also support inputs and outputs of all integer
types. The transpose and hermitian functions support all data types. When
optimizations are enabled, the conjugate operation on a real signal invokes
the block reduction optimization, as that case is a no-op. In-place multiplies
for the magnitude^2 operation are used for reused block I/O on real signals.

Gain Block. The Gain block now performs block reduction when block
reduction is on, inline parameters=ON, and the gain is both nontunable
and unity.

Width Block. The Width block now includes a parameter to specify the
datatype of the output.

Real Data Type Support. The following blocks now operate on both double
precision and single precision floating point signals:

• Dot Product

• Trigonometric

• Matrix Inversion

Block Data Type Table
To view a table that summarizes the data types supported by the blocks in the
Simulink and Fixed-Point block libraries, execute the following command at
the MATLAB command line:

showblockdatatypetable

196

Version 5.0 (R13) Simulink® Software

Simulation Enhancements
Simulink 5.0 includes the following new features and enhancements to
simulation of Simulink models.

• “Invalid Loop Highlighting” on page 197

• “Algebraic Loop Highlighting” on page 197

• “Conditional Execution Behavior” on page 197

• “Reorganized Simulation Diagnostics” on page 198

• “Enhanced Diagnostic Viewer” on page 198

Invalid Loop Highlighting
Simulink software now detects and highlights several kinds of invalid loops:

• Loops that create invalid function-call connections or an attempt to modify
the input/output arguments of a function call

• Loops containing non-latched triggered subsystems

• Self-triggering subsystems

• Loops containing action subsystems in a cycle

This makes it is easier to identify and fix the loop. See “Avoiding Invalid
Loops” for more information.

Algebraic Loop Highlighting
Simulink software now optionally highlights algebraic loops when you update
or simulate a model. See “Highlighting Algebraic Loops” for more information.
The ashow debug command without any arguments now lists all of a model’s
algebraic loops in the MATLAB command window.

Conditional Execution Behavior
This release introduces a new optimization called conditional execution
behavior. Previously, when simulating models containing Switch or Multiport
Switch blocks, Simulink software executed all blocks required to compute all
inputs to each switch at each time step. In this release, Simulink software, by
default, executes only the blocks required to compute the control input and

197

Simulink® Release Notes

the data input selected by the control input at each time step. Similarly, code
generated from the model by Real-Time Workshop software executes only the
code needed to compute the control input and the selected data input. This
optimization speeds simulation and execution of code generated from the
model. See “Conditional Execution Behavior” for more information.

Reorganized Simulation Diagnostics
The Diagnostics Pane of the Simulation Parameters dialog box now
groups diagnostics by functionality. This makes it easier to find and configure
related diagnostics.

Enhanced Diagnostic Viewer
This release introduces an enhanced Diagnostic Viewer. Improvements
include

• Identical appearance on UNIX® and Windows systems

• Hyperlinks to Simulink, Stateflow, and Real-Time Workshop objects that
caused the errors displayed in the viewer

• Sortable error list

Clicking a column head sorts the error list by the contents of that column.

• Configurable content

The View menu allows you to choose which information to display in the
viewer.

• Selectable font size

The FontSize menu allows you to choose the size of the font used to
display error messages.

See “Simulation Diagnostics Viewer” for more information.

Compatibility Considerations. New version of the Diagnostic Viewer is not
supported on the HP and IBM® platforms.

Modeling Enhancements
The following enhancements facilitate creation of Simulink models.

198

Version 5.0 (R13) Simulink® Software

• “Enhanced Mask Editor” on page 199

• “Production Hardware Characteristics” on page 200

• “Including Symbols and Greek Letters in Block Diagrams” on page 200

• “True Color Support” on page 200

• “Print Details” on page 200

• “Boolean Logic Signals” on page 200

• “Model Discretizer” on page 200

Enhanced Mask Editor
This release introduces changes to the Mask Editor designed to improve
usability. Changes include

• Block parameter information moves from the Initialization pane to a new
pane entitled Parameters.

• The Parameters pane allows you to specify a callback function to be called
when the value of a parameter changes.

• The Parameters pane allows you to specify via check boxes whether
a parameter is visible on the masked block’s dialog box and whether a
parameter is tunable.

• The Icon pane provides a list of examples of all the types of drawing
commands that can be used to draw the block’s icon.

See “Working with Block Masks” in the online Simulink documentation for
more information.

Compatibility Considerations.

• Simulink Editor’s Find dialog is not supported on the HP and IBM
platforms. Use the find_system command instead.

• Enhanced version of Mask Editor is not supported on the HP and IBM
platforms.

199

Simulink® Release Notes

Including Symbols and Greek Letters in Block Diagrams
This release allows you to include symbols, Greek letters, and other
formatting in annotations, masked subsystem port labels, and masked
subsystem icon text. You do this by including TeX formatting commands in
the annotation, port label, or icon text.

Production Hardware Characteristics
Production hardware characteristics is a new setting on the Advanced
pane of the Simulation parameters dialog box. This setting, intended for
use in modeling, simulating, and generating code for digital systems, allows
you to specify the sizes of the data types supported by the system being
modeled. Simulink software uses this information to automate the choice of
data types for signals output by some blocks.

True Color Support
This release allows you to use any color supported by your system as the
foreground or background colors of a block diagram. See “Specifying Block
Diagram Colors” in the online documentation for more information.

Print Details
This command generates an HTML report detailing the contents of the
currently selected model (see “Generating a Model Report” in the online
documentation for more information).

Boolean Logic Signals
In previous releases, the Boolean logic signals optimization was off by
default for new models (see “Implement logic signals as boolean data (vs.
double)” in the online Simulink documentation for a description of this
option). In the current release, the optimization is on by default for new
models. This change does not affect existing models.

Model Discretizer
The Model Discretizer tool selectively replaces continuous Simulink blocks
with discrete equivalents. Discretization is critical in digital controller design
for dynamic systems and for hardware in the loop simulations. You can use
this tool to prepare continuous models for use with the Real-Time Workshop

200

Version 5.0 (R13) Simulink® Software

Embedded Coder software, which supports only discrete blocks. See “Model
Discretizer” in the online documentation for more information.

Platform Limitations for HP and IBM
The following are platform limitations for Simulink 5.0 for the HP and IBM
platforms that are new limitations, as of Version 5.0.

• The Parameter dialog for the Configuration Subsystem Block is not
supported on the HP and IBM platforms. Instead, use the set_param
command to set the block’s parameters.

• The View Changes dialog box for modified library links is not supported
on the HP and IBM platforms. Instead, select the modified link and
execute ld=get_param(gcb,'LinkData') to get a structure that lists the
parameter differences between the library and local instance of the block.
Edit this structure and execute set_param(gcb,'LinkData',ld) to apply
the changes.

• The GUI interface to the Simulink Debugger is not supported on the HP
and IBM platforms. Use the command-line interface instead.

• Model Discretizer is not supported on the HP and IBM platforms.

Note The Release 12 and 12.1 platform limitations for Simulink software for
the HP and IBM platforms still apply to Release 13. These are listed below.

The following Java-dependent Simulink features, introduced in Simulink 4.1,
are not available on the HP and IBM platforms.

• Simulink Data Class Designer

• S-Function Builder

• Look-Up Table Editor

201

Simulink® Release Notes

Version 4.1 (R12+) Simulink Software
This table summarizes what’s new in V4.1 (R12+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed Bugs No

New features and changes introduced in this version are organized by these
topics:

• “Simulink Editor” on page 202

• “Modeling Enhancements” on page 204

• “Simulink Debugger” on page 207

• “Block Library” on page 208

• “Triggered Subsystems” on page 210

• “Running Simulink 4.1 Models in Simulink 4.0 Software” on page 211

• “Direct Feedthrough Compensation Deprecated” on page 212

• “Improved Invalid Model Configuration Diagnostics” on page 212

• “Bug Fixes” on page 213

Simulink Editor
This section describes enhancements to the Simulink Editor.

Undo Move
In Simulink 4.1, the Undo command on the Simulink Edit menu restores
blocks, annotations, lines, and nodes that have moved to their original
locations (see “Undoing a Command” in the Simulink documentation).

202

Version 4.1 (R12+) Simulink® Software

Undo Subsystem Creation
In Simulink 4.1, the Undo command on the Simulink Edit menu restores
blocks that have been grouped into a subsystem to their original level in the
model (see “Undoing Subsystem Creation” in the Simulink documentation).

Autoconnecting Blocks
This version makes connecting blocks significantly easier. To connect a set of
source blocks to a target block, simply select the source blocks, hold down the
Ctrl key and left-click the target block. Simulink software draws connecting
lines between the source blocks and the destination block, neatly routing lines
around intervening blocks. To connect a source block to a set of target blocks,
select the target blocks, hold down the Ctrl key and left–click the source block.
To connect two blocks, select the source block, and left-click the destination
block while holding down the Ctrl key. Simulink software connects as many
ports on the two blocks as possible (see “Connecting Blocks”).

Autorouting Signal Lines
Simulink software now routes signal lines around intervening blocks when
you connect them either interactively (by dragging the connecting lines or
using autoconnect) or programmatically via the add_line command’s new
'autorouting' option (see “Autorouting Option Added to add_line Command”
on page 204).

Displaying Storage Class on Lines
This version adds an item to the Format menu, which toggles the display of
(nonAuto) storage class on signal lines.

Save Models in Release 11 Format
This release can save post-Release 11 models in Release 11 format. Simulink
3 (Release 11) can load and run converted models that do not use any
post-Release 11 features of Simulink. Simulink 3 can load converted models
that use post-Release 11 features but may not be able to simulate the model
correctly. Use the Save as option from the Simulink File menu or the
following command to save a model in Release 11 format.

slsaveas(SYS)

203

Simulink® Release Notes

Modeling Enhancements
This section describes enhancements to Simulink dynamic system modeling
tools.

Autorouting Option Added to add_line Command
The add_line command now optionally routes lines around intervening
blocks and annotations. For example, the following command autoroutes a
connection between two blocks in the vdp model.

add_line('vdp','Product/1','Mu/1','autorouting','on')

The autorouting option is off by default. See add_line in the Simulink
documentation for more information.

S-Function Builder
The S-Function Builder generates an S-function from specifications that you
enter in a dialog box. It provides an easy way for you to incorporate existing
code into a Simulink model.

add_param, delete_param
With this version, you can add custom parameters to your block diagrams.

add_param('modelname','MyParameterName','value')
delete_param('modelname','MyParameterName')

You can also use the model handle in place of the model name. See add_param
and delete_param in the Simulink documentation for more information.

Connection Callbacks
With this version, you can use set_param to set callbacks on ports that
are triggered by changes in the ports’ connectivity. The callback function
parameter is named ConnectionCallback. When the port’s connectivity
changes (addition/deletion of line connected to the port, connection of new
block to the port, etc.), Simulink software invokes the callback function with
the port handle as its argument. See “Port Callback Parameters” for more
information.

204

Version 4.1 (R12+) Simulink® Software

Saving Block User Data in Model Files
This version adds a new block parameter, named UserDataPersistent, that
is off by default. Setting this parameter on, e.g.,

set_param(block-name,'UserDataPersistent','on')

causes Simulink software to include a block’s user data (i.e., the value
of the block’s UserData parameter) in the model file when you save a
model. Simulink software encodes the user data as ASCII characters and
saves the encoded data in a new section of the model file called MatData.
This mechanism works with all forms of MATLAB data, including arrays,
structures, objects, and Simulink data objects. See “Associating User Data
with Blocks” for more information.

Absolute Tolerance Enhancements
This version adds a dialog item for setting the absolute tolerance for each
state in the State-Space block, the Transfer Fcn block, and the Zero-Pole
block. With this enhancement, you can now specify the absolute tolerance for
solving every continuous state in your model.

Block Reduction Enhancements
S-functions may now request that they be eliminated from the compiled
model. To do this, call ssSetBlockReduction (true) inside the S-function.
This is an advanced feature provided for customers writing S-functions who
want to optimize the generated code produced for their S-function. Graphical
connectivity is now remapped during block reduction, eliminating a source
of error during reduction (e.g., a memory reference error used to occur if
Simulink software eliminated a block connected to a scope). Block reduction is
now on by default, and a Simulink preference has been added for the option.

Boolean Logic Signals Preference
The Simulink Preferences dialog box now allows you to specify the use of
Boolean logic signals by default. See “Implement logic signals as boolean data
(vs. double)” in the Simulink documentation for more information.

205

Simulink® Release Notes

Subsystem Semantics Demos
Typing sl_subsys_semantics at the MATLAB prompt now displays a set of
models that illustrate the semantics of various types of subsystem blocks. The
demos include formal definitions of function-call subsystems.

Enhanced Engine Model Demos
The top and bottom dead center detection in the engine and enginewc demo
models now use a reset integrator. In previous versions, the models used
a triggered subsystem to detect angular position. This method resulted in
inefficiencies and a slower, less accurate solution. In addition, self-triggering
subsystems are now illegal in Simulink software.

Setting Block Sorting Priority on Virtual Subsystems
In Simulink 4.0, it was an error to specify a priority on a virtual subsystem.
In Simulink 4.1, you can specify priorities on virtual subsystems.

Using ~ in Filenames on UNIX
Now all filename fields in Simulink software support the mapping of
the ~ character in filenames. For example, in a To File block, you can
specify ~/outdir/file.mat. On most systems, this will expand to
/home/$USER/outdir/file.mat.

Improved Warning About Slow Signals Feeding the Enable
Port of an Enabled Subsystem Containing Fast Blocks
In a multitasking environment, deterministic results cannot be guaranteed
if a slow signal feeds the enable port of an enabled subsystem that contains
fast blocks. In previous versions, Simulink software did not issue a warning
in some cases where this may occur.

Flagging Function-Call Subsystem Cycles
In previous versions, Simulink software allowed you to build models
containing function-call-cycles, i.e., function-call subsystems that directly
or indirectly call themselves.

206

Version 4.1 (R12+) Simulink® Software

Such models cannot be correctly simulated. Accordingly, Simulink software
now displays an error message when you attempt to run or update a diagram
containing function-call cycles.

Simulink Debugger
This section describes enhancements to the Simulink debugger.

Enhancement to Sorted List Display
The Simulink debugger (sldebug) sorted list command, slist, now displays
the names of the S-functions residing inside S-function blocks.

Improved Messages in Accelerated Mode
The trace, break, zcbreak, nanbreak, and minor commands now indicate
that they are disabled when in accelerator mode and you need to switch to
normal mode to activate them. The spacing of several messages has been
fixed so the text aligns correctly.

Breakpoints on a Function-Call Subsystem
You can now put a break point on a function-call subsystem. Simulink
software breaks when the subsystem is executed. In Release 12, entering
the quit command while at a breakpoint within a function-call subsystem
wouldn’t always quit the debugger. Now the quit command ends the
debugging session once the initiating (calling) Stateflow chart or S-function
finishes executing its time step.

207

Simulink® Release Notes

Displaying and Probing Virtual Blocks
The display and probe commands now work for virtual blocks.

Stepping Stateflow Charts
You can now step execution of a model into a Stateflow chart.

Block Library
This section describes enhancements to the Simulink block libraries.

Unified Pulse Generator
This version merges the Discrete Pulse Generator block into the Pulse
Generator block. The combined block has two modes: time-based and
sample-based (discrete). Time-based mode varies the step size when a
variable step solver is being used to ensure that simulation steps occur at
pulse on/off transitions. When a fixed step solver is used, the time-based mode
computes a fixed step size that ensures that a simulation step occurs at every
pulse transition. The Pulse Generator block also outputs a pulse of any real
data type in sample-based as well as time-based mode.

Control Flow Blocks
Simulink 4.1 adds an If block and Switch Case block that can drive
conditionally executed subsystems that contain instances of the new Action
Port block. Action subsystems are similar to enabled subsystems, except that
all blocks must run at the same rate as the If or Switch Case block.

This version also adds a For Iterator block and a While Iterator block. When
placed in a subsystem, these blocks cause all of the blocks in the system to
run multiple cycles during a time step. The block cycle in a For Iterator
subsystem runs a specified number of times. The block cycle in a While
Iterator subsystem runs until a specified condition is false. A user can limit
execution of a While Iterator subsystem to a specified number of iterations
to avoid infinite loops.

The new Assignment block allows a model to assign values to specified
elements of a signal.

208

Version 4.1 (R12+) Simulink® Software

Bus Creator
Simulink 4.1 adds a Bus Creator block that combines the output of multiple
blocks into a single signal bus. A model can use the existing Signal Selector
block to extract signals from the bus. The block’s dialog box allows you to
assign names to signals on the bus or allow the signals to inherit their names
from their sources. When you double-click on a signal name in the block
dialog, the source block is highlighted. There is no execution overhead in the
use of bus creator/bus selector blocks.

Sine Wave Block Enhancements
The Sine Wave block now supports a bias factor that eliminates the
need to sum with a Constant block. The Sine Wave block also has a new
computational mode. This mode (called sample-based) eliminates the
dependence on absolute time.

Enhanced Flip-Flop Blocks
Simulink Extras (simulink_extras.mdl) contains a set flip-flop blocks. These
blocks now use the new triggered subsystem latching semantics. In addition,
the S-R Flip-Flop block now models a physical NOR gate (i.e., S=1, R=1 => Q=0,
Q!=0, the undefined state).

Additional Data Type Support
The Discrete-Time Integrator and Rounding Function blocks now handle
single as well as double values. The Transport Delay, Unit Delay, Variable
Transport Delay, Memory, Merge, and Outport blocks can specify nonzero
initial conditions when operating on fixed-point signals.

Simulink Block Library Reorganization
The Simulink Block Library contains a new Subsystems sublibrary. The new
library contains most of the new control flow blocks as well as subsystem
and subsystem-related blocks that used to reside in the Signals & Systems
library. The subsystems in the new library each contain the minimum set of
blocks needed to create a functioning subsystem, e.g., an input port and an
output port.

209

Simulink® Release Notes

Compatibility Considerations. The Simulink Block Library contains a new
Subsystems sublibrary. The new library contains most of the new control flow
blocks as well as subsystem and subsystem-related blocks that used to reside
in the Signals & Systems library. The subsystems in the new library each
contain the minimum set of blocks needed to create a functioning subsystem,
e.g., an input port and an output port.

Scope Enhancements
The Scope block includes the following enhancements:

• A floating version of the Scope added to the Sinks block library

• Floating Scope saves the signals selected for display in the model file

• The Scope’s toolbar buttons for toggling between floating/nonfloating mode,
restoring saved axes, locking/unlocking axes, and displaying the Signal
Selector

S-Functions Sorted Like Built-In Blocks

Compatibility Considerations. When sorting blocks, Simulink software
now treats S-function blocks the way it treats built-in blocks. This means
that S-functions now work correctly in nonvirtual subsystems when there
is a direct feedback connection (in Simulink 4.0 and prior, this wasn’t the
case). It also means that models compile (update diagram) faster. As a side
effect, the execution order for S-functions that incorrectly set the direct
feedthrough flag differs from that used in previous versions of Simulink
software. Consequently, models that contain invalid S-functions may produce
different answers in this version of Simulink software.

Triggered Subsystems
This section describes features and changes to the Simulink triggered
subsystems.

Added Latched Triggered Subsystems
Now triggered subsystems enable you to implement software triggering,
hardware triggering, or a combination of the two. Software triggering is
defined as

210

Version 4.1 (R12+) Simulink® Software

if (trigger_signal_edge_detected) {
out(t) = f(in(t));

}

Hardware triggering is defined as

if (trigger_signal_edge_detected) {
out(t) = f(in(t-h)); // h == last step size

}

Compatibility Considerations. Previous to this version, triggered
subsystems provided software triggering and a form of hardware triggering
when a cycle involving triggered subsystems existed. Now, you must explicitly
specify whether or not you’d like software or hardware triggering. This
is done by selecting 'Latch (buffer) input' on the Inport blocks in a
triggered subsystem.

Each input port of a triggered subsystem configures whether or not the
input should be latched. A latched input provides the hardware-triggering
semantics for that input port. Type sl_subsys_semantics at the MATLAB
prompt for more information.

Self-Triggering Subsystems Are No Longer Allowed

Compatibility Considerations. Before this version, you could define the
output of a triggered subsystem to directly feed back into the trigger port
of the subsystem (with potentially other additive signals). This resulted in
an implicit delay. Now you must explicitly define the delay by inserting
a memory block.

Running Simulink 4.1 Models in Simulink 4.0
Software
Simulink 4.0 can run models created or saved by Simulink 4.1, with the
provisions outlined in the following.

211

Simulink® Release Notes

Compatibility Considerations
Simulink 4.0 can run models created or saved by Simulink 4.1 as long as the
models do not use features introduced in the new version, including new
block types and block parameters. In particular, you should not attempt to
use Simulink 4.0 to simulate or even open models that use the new Simulink
control flow blocks. Opening such models cause Simulink 4.0 to crash.

Direct Feedthrough Compensation Deprecated
If an S-function needs the current value of its input to compute its output, it
must set its direct feedthrough flag to true.

Compatibility Considerations
Previously, if a direct feedthrough S-function failed to do this, Simulink
software tried to provide a valid signal to the S-function’s mdlOutput
(M-file flag=3) or mdlGetTimeOfNextVarHit (M-file flag=4) methods. This
special compensation mode for S-functions was flawed. For this reason,
the current version deprecates the mode, though making it available
as an option. In this version, by default, if an S-function sets its direct
feedthrough flag to false during initialization, Simulink software sets the
S-function’s input signal to NULL (or a NaN signal for M-file S-functions)
during the mdlOutput or mdlGetTimeOfNextVarHit methods. Thus, in this
version, models with S-function(s) may produce segmentation violations.
See matlabroot/simulink/src/sfuntmpl_directfeed.txt for more
information.

Improved Invalid Model Configuration Diagnostics
This version of Simulink software does a better job of detecting and flagging
invalid modeling constructs in Simulink models. The changes include:

• Direct feedthrough compensation no longer occurs by default for S-functions
(see “Direct Feedthrough Compensation Deprecated” on page 212).

• S-functions are now sorted like built-in blocks (see “S-Functions Sorted
Like Built-In Blocks” on page 210).

• Simulink software no longer inserts implicit latches in triggered subsystems
that directly or indirectly trigger themselves (see “Self-Triggering
Subsystems Are No Longer Allowed” on page 211, above). Instead it signals

212

Version 4.1 (R12+) Simulink® Software

an error when it detects a triggered subsystem loop with unlatched inputs.
To avoid the error, you must select the Latch option on the triggered
subsystem’s input ports.

• Simulink software now signals an error when it detects invalid
configurations of function-call subsystems. See the Subsystem Examples
block in the Subsystems library for examples of illegal modeling constructs
involving function-call subsystems. You can disable this diagnostic by
setting the Invalid FcnCall Connection parameter on the Diagnostics
pane of the Simulation Parameters dialog box to none or warning.

Compatibility Considerations
Consequently models that ran in previous versions of Simulink software
(sometimes producing incorrect results) may not run in the current release.

Bug Fixes
This section lists fixes to bugs that occurred in the previous version of
Simulink software.

Variable sample time S-functions
Simulink software no longer crashes when an S-function with variable sample
time is placed in an atomic subsystem.

Bus selector detection of duplicated names
A bug related to the detection of a duplicated name in a bus that was feeding
a Bus Selector block was fixed.

Optimize block memory use
In Simulink 4.0, the Continuous and Discrete Transfer Function blocks and
the Discrete Filter block used more memory than they needed to, particularly
for the case of many poles. They now use an optimal amount of memory.

Miscellaneous fixes to the model loader
Miscellaneous bug fixes have been performed on the model loader:

213

Simulink® Release Notes

• The loader and saver now retain any comment lines (i.e., lines that begin
with #) that are found at the top of the model file.

• The loader does not crash on Windows NT® systems when file sizes are
integer multiples of 4096.

• The loader does not hang on corrupt models in which blocks with duplicate
names are found.

Profiler fixes
The Simulink profiler now saves its files in the temporary directory. See the
MATLAB command tempdir. The help was also updated.

Chirp block fix
The Chirp block now sweeps through frequencies correctly from the initial
frequency at the simulation start time to the target frequency at the target
time.

Function-call subsystem bug fixes
This version fixes several bugs related to the execution orders of function-call
subsystems.

Sorting bug fix
Previous versions incorrectly computed the direct feedthrough setting for
nonvirtual subsystems in triggered/function-call subsystems. This resulted in
incorrect execution (sorting) orders. Now all nonvirtual subsystems within
triggered subsystems have their direct feedthrough (needs input) flags set
for all input ports. This is needed because a nonvirtual subsystem with a
triggered sample time executes both its output and update methods together
within the context of the model’s output method.

Fixed handling of grounded/unconnected inputs feeding
certain blocks
Simulink 4.0 incorrectly handled grounded or unconnected inputs to level-1
and level-2 S-functions requiring contiguous inputs and to some Matrix
blocks. This has been fixed in Simulink 4.1.

214

Version 4.0 (R12) Simulink® Software

Version 4.0 (R12) Simulink Software
This table summarizes what’s new in V4.0 (R12):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

No No

New features and changes introduced in this version are organized by these
topics:

• “Simulink Editor” on page 215

• “Modeling Enhancements” on page 218

• “Simulink Debugger” on page 220

• “Block Library” on page 220

• “SB2SL” on page 223

• “Port Name Property” on page 224

Simulink Editor
This section describes enhancements to the Simulink Editor.

Preferences
The Simulink Preferences dialog box allows you to specify default settings
for many options (see “Simulink Preferences Window” in the Simulink
documentation).

Text Alignment
Simulink 4.0 allows you to choose various alignments for annotation text. To
choose an alignment for an annotation, select the annotation and then select

215

Simulink® Release Notes

Text Alignment from the editor menu bar or context (right-click) menu
(see “Annotating Diagrams”).

UNIX Context Menus
The UNIX version of Simulink 4.0 now has context menus for block diagrams.
Click the right button on your mouse to display the menu.

Library Link Enhancements
Simulink 4.0 optionally displays an arrow in each block that represents a
library link in a model. Simulink 4.0 also allows you to modify a link in
a model and propagate the changes back to the library (see “Modifying
Reference Blocks” in the Simulink documentation).

Note Simulink software displays "Parameterized Link" on the parameter
dialog box of a masked subsystem whose parameters differ from the library
reference block to which the masked subsystem is linked. This feature, which
is not documented in the Simulink documentation, allows you to determine
quickly whether a library link differs from its reference.

Find Dialog Box
The Find dialog box enables you to search Simulink models and Stateflow
charts for objects that satisfy specified search criteria. You can use the dialog
box to find annotations, blocks, signals, states, state transitions, etc. To invoke
the Find dialog, select Find from the Simulink Editmenu (see “The Finder”).

Model Browser
The Model Browser’s toolbar includes the following new buttons:

• Show Library Links

Shows library links as nodes in the browser tree.

• Look Under Masks

Shows the contents of masked blocks as nodes in the browser tree.

216

Version 4.0 (R12) Simulink® Software

Single Window Mode
Simulink software now provides two modes for opening subsystems. In
multiwindow mode, Simulink software opens each subsystem in a new
window. In single-window mode, Simulink software closes the parent and
opens the subsystem (see "Window Reuse" in Using Simulink).

Keyboard Navigation
Simulink 4.0 provides the following new keyboard shortcuts.

Key Action

Tab Selects the next block in the block
diagram.

Shift+Tab Selects the previous block in the
block diagram.

Ctrl+Tab Cycles between the browser tree
pane and the diagram pane when
the model browser is enabled.

Enter Opens the currently selected
subsystem.

Esc Opens the parent of the current
subsystem.

Enhanced Library Browser
The Library Browser incorporates the following new features:

• Blocks no longer appear as browser tree nodes. Instead, they appear as
icons in the preview pane.

• The preview pane has moved from beneath the library tree pane to beside
the tree pane. You can create instances of blocks displayed in the preview
pane by dragging them from the preview pane and dropping them in a
model.

• Splitter bars now divide the browser’s panes, allowing the panes to be
independently resized.

217

Simulink® Release Notes

• Double-clicking a block’s icon opens the block’s parameter dialog box with
all fields disabled. This allows you to inspect, but not modify, a library
block’s parameters.

• Double-clicking a library block opens the library in the preview pane.

• You can now insert a block in the topmost model on your screen by
right-clicking the block in the preview pane and selecting Insert in... from
the context menu that appears. If no model is open or the topmost model is
a locked library, the Library Browser offers to create a model in which to
insert the block.

• The browser now contains a menu with File, Edit, and Help options.

• The block help text pane has moved from the bottom of the Library Browser
to the top.

• Selecting Find from the Library Browser’s Edit menu displays a modeless
Find dialog box.

• The browser’s search feature is much faster and supports regular
expressions.

Help Menus
Simulink 4.0 adds a Help menu to the menu bar on model and library
windows. The help item on a block context menu displays a help page for the
block. The help item on the model context menu displays the first page of
the Simulinkdocumentation.

Modeling Enhancements

Hierarchical Variable Scoping
This release extends the ability of Simulink software to resolve references
to variables in masked subsystems. Previously Simulink software could
resolve references only to variables in a block’s local workspace. With this
release, Simulink software will resolve references to variables located
anywhere within the workspace hierarchy containing the block (see "The
Mask Workspace" in Using Simulink).

218

Version 4.0 (R12) Simulink® Software

Note In some cases, hierarchical scoping will cause some models to behave
differently in the current release than in previous releases of Simulink
software.

Matrix Signals
Many Simulink blocks can now accept or output matrix signals. A matrix
signal is a two-dimensional array of signal elements represented by a matrix.
Each matrix element represents the value of the corresponding signal element
at the current time step. In addition to matrix signals, Simulink software also
supports scalar (dimensionless) signals and vector signals (one-dimensional
arrays of signals). Simulink software can optionally thicken (select Wide
Lines from the Format menu) and display the dimensions of lines (select
Line Dimensions from the Format menu) that carry vector or matrix
signals. When you select the Line Dimensions option, Simulink software
displays a label of the form [r x c] above a matrix signal line, where r is the
number of rows and c is the number of columns. For example, the label [2 x
3] indicates that the line carries a two-row by three-column matrix signal.

You can use Simulink source blocks, such as a Sine Wave or a Constant block,
to generate matrix signals. For example, to create a time-invariant matrix
signal, insert a Constant block in your model and set its Constant Value
parameter to any MATLAB expression that evaluates to a matrix, e.g., [1 2;
3 4], that represents the desired signal. See "Working with Signals" in the
Simulink documentation for more information.

Simulink Data Objects
Simulink data objects allow a model to capture user-defined information
about parameters and signals, such as minimum and maximum values, units,
and so on (see "Working with Data Objects" in the Simulink documentation).

Block Execution Order
Simulink software now optionally displays the execution order of each block
on the model’s block diagram (see "Displaying Block Execution Order" in
the Simulink documentation).

219

Simulink® Release Notes

Simulink Debugger
This section describes enhancements to the Simulink debugger.

GUI Debugger Interface
Simulink 4.0 introduces a graphical user interface (GUI) for the Simulink
Debugger. For more information, see "Simulink Debugger" in the Simulink
documentation.

Block Library
This section describes enhancements to the Simulink block libraries.

Product Block
The Product block now supports both element-by-element and matrix
multiplication and inversion of inputs. The block’s parameter dialog includes
a newMultiplication parameter that allows you to specify whether the block
should multiply or invert inputs element-by-element or matrix-by-matrix.

Gain Block
The Gain block now supports matrix as well as element-wise multiplication
of the input signal by a gain factor. Both input signals and gain factors can
be matrices. The block’s parameter dialog includes a new Multiplication
parameter that allows you to choose the following options:

• K.*u (element-wise product)

• K*u (matrix product with the gain as the left operand)

• u*K (matrix product with the gain as the right operand)

Math Function Block
The Math Function block adds two new matrix-specific functions: transpose
and Hermitian. The first function outputs the transpose of the input matrix.
The second function outputs the complex conjugate transpose (Hermitian) of
the input matrix.

220

Version 4.0 (R12) Simulink® Software

Reshape Block
Simulink 4.0 introduces the Reshape block, which changes the dimensionality
of its input signals, based on an Output dimensionality parameter that you
specify. For example, the block can change an n-element vector to a 1-by-N or
N-by-1 matrix signal and vice versa. You can find the Reshape block in the
Simulink Signals & Systems library.

Multiplexing Matrix Signals
The Simulink Mux, Demux, and Bus Selector blocks have been enhanced to
support multiplexing of matrix signals.

Function Call Iteration Parameter
Simulink 4.0 adds a Number of iterations parameter to the Function Call
Generator block. This parameter allows you to specify the number of times
the target block is called per time step.

Probing Signal Dimensionality
The Probe block now optionally outputs the dimensionality of the signal
connected to its input.

Configurable Subsystem
The Configurable Subsystem block has been reimplemented to make it easier
to use. The configurable subsystem block now has a Blocks menu that allows
you to choose which block the subsystem represents. To display the menu,
select the configurable subsystem and then Blocks from the Simulink editor’s
Edit or context (right click) menu.

Look-Up Table Blocks
This release provides four new Look-Up Table (LUT) blocks.

• Direct Look-Up Table (n-D)

• Look-Up Table (n-D)

• PreLookup Index Search (Obsolete)

• Interpolation (n-D) Using PreLookup (Obsolete)

221

Simulink® Release Notes

The blocks reside in the Simulink Functions and Tables block library.

Polynomial Block
The Polynomial block outputs a polynomial function of its input. The block
resides in the Simulink Functions and Tables block library.

Signal Specification
The Signal Specification block allows you to specify the attributes that the
input signal must satisfy. If the input signal does not meet the specification,
the block generates an error.

ADA S-Functions
Simulink software now supports S-functions coded in ADA. See "Creating Ada
S-Functions" in Writing S-Functions for more information.

Bitwise Logical Operator Block
The Bitwise Operator block is a new block that logically masks, inverts,
or shifts the bits of an unsigned integer signal. See the online Simulink
documentation for details.

Atomic Subsystems
Simulink 4.0 allows you to designate subsystems as atomic as opposed to
virtual. An atomic subsystem is a true subsystem. When simulating a model,
Simulink software executes all blocks contained by an atomic subsystem block
before executing the next block of the containing model (or atomic subsystem).

By declaring a subsystem atomic, you guarantee that Simulink software
completes execution of the subsystem before executing any other blocks at
the same level in the model hierarchy. See "Atomic Subsystems" in Using
Simulink for more information.

Note Conditionally executed subsystems are inherently atomic. Simulink
software does not allow you to specify them as atomic or virtual.

222

Version 4.0 (R12) Simulink® Software

SB2SL

SB2SL Extends Code Generation Support
SB2SL, which is included as part of the Simulink product, allows you to
translate SystemBuild SuperBlocks to Simulink models.

For Release 12, SB2SL 2.1 has been enhanced to provide more complete
support for use with Real-Time Workshop software. If you use Real-Time
Workshop software version 4.0 to generate code for models you have converted
from SystemBuild to Simulink software (using SB2SL), then code is generated
for most translated blocks in the model.

The blocks that do not support code generation through Real-Time Workshop
software version 4.0 are:

• ConditionBlock

• Decoder

• Encoder

• GainScheduler

• Interp Table (Archive library)

• ShiftRegister

Note SB2SL 2.1 also includes a number of important bug fixes.

223

Simulink® Release Notes

Port Name Property
In the current release, a port’s name property refers to the port’s (and line’s)
name, which, in the current release, can differ from the line’s label.

Compatibility Considerations
In previous releases, the name property of ports and lines referred to the label
of the line connected to the port. If you need to get the line’s label, invoke

get_param(p, 'label')

where p is the handle of the port.

224

Compatibility and Limitations Summary for Simulink® Software

Compatibility and Limitations Summary for Simulink
Software

This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with Version
Compatibility Impact

Latest Version
V7.3 (R2009a)

See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Lookup Table (n-D) and Interpolation Using
Prelookup Blocks Perform Efficient Fixed-Point
Interpolations” on page 10

• “New Rounding Modes Added to Multiple Blocks”
on page 11

• “Discrete Filter Block Performance, Data Type,
Dimension, and Complexity Enhancements” on
page 14

• “Dot Product Block Converted from S-Function to
Core Block” on page 16

• “Removal of Lookup Table Designer from the
Lookup Table Editor” on page 21

• “Signal can Resolve to at Most One Signal Object”
on page 7

225

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

V7.2 (R2008b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Conditionally Executed Subsystem Initial
Conditions” on page 24

• “Data Type Override Now Works Consistently
on Outputs” on page 29

• “Improperly-Scaled Fixed-Point Relational
Operators Now Match MATLAB Results” on page
30

• “One Parameter Controls Accelerator Mode Build
Verbosity” on page 27

• “Signal Logging and Test Points Are Controlled
Independently” on page 37

• “Signal Logging Consistently Retains Duplicate
Signal Regions” on page 37

• “Modifying a Link to a Library Block in a
Callback Function Can Cause Illegal Modification
Errors” on page 32

• “Mapping of Target Object Properties to
Parameters in the Configuration Parameters
Dialog Box” on page 56

• “Legacy Code Tool Enhancement” on page 66

226

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

V7.1 (R2008a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Specify Scaling Explicitly for Fixed-Point Data”
on page 70

• “Array Format Cannot Be Used to Export
Multiple Matrix Signals” on page 71

• “Changing Nontunable Values Does Not Affect
the Current Simulation” on page 72

• “Detection of Illegal Rate Transitions” on page 72

• “Explicit Scaling Required for Fixed-Point Data”
on page 73

• “Rate Transition Blocks Needed on Virtual
Buses” on page 76

• “Sample Times for Virtual Blocks” on page 77

• “New Discrete FIR Filter Block Replaces
Weighted Moving Average Block” on page 78

• “Solver Controls” on page 81

• “S-Functions” on page 83
V7.0 (R2007b) See the Compatibility Considerations

subheading for each of these new features or
changes:

• “Simulink® Accelerator” on page 84

• “Mask Editor Now Requires Java” on page 86

• “Support for Algorithms That Span Multiple
M-Files” on page 87

• “New Break Link Options for save_system
Command” on page 94

227

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Simulink Software Checks Data Type of the
Initial Condition Signal of the Integrator Block”
on page 94

V6.6.1 (R2007a+) None
V6.6 (R2007a) See the Compatibility Considerations

subheading for each of these new features or
changes:

• “GNU Compiler Upgrade” on page 103

• “Change to
Simulink.ModelAdvisor.getModelAdvisor
Method” on page 106

• “Legacy Code Tool Enhancements” on page 108

• “Using & and | Operators in Embedded MATLAB
Function Blocks” on page 113

• “Calling get Function from Embedded MATLAB
Function Blocks” on page 114

• “Default for Signal Resolution Parameter Has
Changed” on page 116

• “Port Parameter Evaluation Has Changed” on
page 119

• “Referencing Configuration Sets” on page 117

• “Change to PaperPositionMode Parameter” on
page 121

• “Change in Version 6.5 (R2006b) Introduced
Incompatibility” on page 122

228

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

V6.5 (R2006b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Enhanced Lookup Table Blocks” on page 124

• “Parameter Objects Can Now Be Used to Specify
Model Configuration Parameters” on page 128

• “New Requirement for Calling MATLAB
Functions from Embedded MATLAB Function
Blocks” on page 133

• “Type and Size Mismatch of Values Returned
from MATLAB Functions Generates Error” on
page 134

• “Changes to Integrator Block’s Level Reset
Options” on page 130

• “Attempting to Reference a Symbol in an
Uninitialized Mask Workspace Generates an
Error” on page 129

• “Embedded MATLAB Function Blocks Cannot
Output Character Data” on page 135

V6.4.1 (R2006a+) None
V6.4
(R2006a)

See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Range-Checking for Parameter and Signal
Object Values” on page 138

• “Concatenate Block” on page 139

• “Built-in Block’s Initial Appearance Reflects
Parameter Settings” on page 140

229

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Setting FIMATH Cast Before Sum to False
No Longer Supported in Embedded MATLAB
MATLAB Function Blocks” on page 146

• “Type Mismatch of Scalar Output Data in
Embedded MATLAB Function Blocks Generates
Error” on page 147

• “Implicit Parameter Type Conversions No Longer
Supported in Embedded MATLAB Function
Blocks” on page 147

V6.3
(R14SP3)

See the Compatibility Considerations and/or
Limitations subheading for each of these changes:

• “Model Referencing” on page 149

• “MEX-Files on Windows Systems” on page 157

• “Fixed-Point Functions No Longer Supported for
Use in Signal Objects” on page 157

• “Parameter Object Expressions No Longer
Supported in Dialog Boxes” on page 157

• “MEX-File Extension Changed” on page 158
V6.2
(R14SP2)

See the Compatibility Considerations and/or
Limitations subheadings for each of these changes:

• “Rootlevel Input Ports” on page 160
V6.1
(R14SP1)

See the Compatibility Considerations for this
change:

• “Model Load Warnings” on page 163

230

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

V6.0
(R14)

See the Compatibility Considerations and
Limitations subheadings for each of these changes:

• “Model Referencing” on page 165

• “MATLAB Data Type Conversions” on page 174

• “Signal Object Resolution Changes” on page 174

• “Loading Models Containing Non-ASCII
Characters” on page 175

• “Change in Sample Time Behavior of Unary
Minus Block” on page 176

• “Initial Output of Conditionally Executed
Subsystems” on page 176

• “Execution Context Default Changes” on page
176

• “Internal Signal Structures Revamped” on page
172

V5.0.1
(R13.0.1)

See the Compatibility Considerations
subheading for this change:

• “Tunable Parameters for Unified Fixed-Point
Blocks” on page 189

V5.0
(R13)

See the Compatibility Considerations
subheadings for each of these changes:

• “Enhanced Diagnostic Viewer” on page 198

• “Enhanced Mask Editor” on page 199

• “Model Discretizer” on page 200

231

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

V4.1
(R12+)

See the Compatibility Considerations
subheadings for each of these changes:

• “Simulink Block Library Reorganization” on page
209

• “S-Functions Sorted Like Built-In Blocks” on
page 210

• “Added Latched Triggered Subsystems” on page
210

• “Self-Triggering Subsystems Are No Longer
Allowed” on page 211

• “Running Simulink 4.1 Models in Simulink 4.0
Software” on page 211

• “Direct Feedthrough Compensation Deprecated”
on page 212

• “Improved Invalid Model Configuration
Diagnostics” on page 212

V4.0
(R12)

See the Compatibility Considerations for this
change:

• “Port Name Property” on page 224

232

	toc
	Summary by Version
	Using Release Notes
	What’s in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Version 7.3 (R2009a) Simulink Software
	Simulation Performance
	Saving and Restoring the Complete SimState
	Save Simulink Profiler Results

	Component-Based Modeling
	Port Value Displays in Referenced Models
	Parallel Builds Enable Faster Diagram Updates for Large Model Re

	Embedded MATLAB Function Blocks
	Support for Enumerated Types
	Use of Basic Linear Algebra Subprograms (BLAS) Libraries for Spe

	Data Management
	Signal can Resolve to at Most One Signal Object
	“Signed” Renamed to “Signedness” in the Simulink.NumericType cla
	“Sign” Renamed to “Signedness” in the Data Type Assistant
	Tab Completion for Enumerated Data Types

	Simulink File Management
	Model Dependencies Tools

	Block Enhancements
	Prelookup and Interpolation Using Prelookup Blocks Support Param
	Lookup Table (n-D) and Interpolation Using Prelookup Blocks Perf
	Expanded Support for Simplest Rounding Mode to Maximize Block Ef
	New Rounding Modes Added to Multiple Blocks
	Lookup Table (n-D) Block Performs Faster Calculation of Index an
	Discrete FIR Filter Block Supports More Filter Structures
	Discrete Filter Block Performance, Data Type, Dimension, and Com
	MinMax Block Performs More Efficient and Accurate Comparison Ope
	Logical Operator Block Supports NXOR Boolean Operator
	Discrete-Time Integrator Block Uses Efficient Integration-Limiti
	Dot Product Block Converted from S-Function to Core Block
	Pulse Generator Block Uses New Default Values for Period and Pul
	Random Number and Unit Delay Blocks Use New Default Values for S
	Trigonometric Function Block Provides Better Support of Accelera
	Reshape Block Enhanced with New Input Port
	Multidimensional Signals in Simulink Blocks
	Subsystem Blocks Enhanced with Read-Only Property That Indicates

	User Interface Enhancements
	Port Value Displays in Referenced Models
	Print Sample Time Legend
	M-API for Access to Compiled Sample Time Information
	Model Advisor Report Enhancements
	Counterclockwise Block Rotation
	Physical Port Rotation for Masked Blocks
	Smart Guides
	Customizing the Library Browser’s User Interface
	Subsystem Creation Command

	S-Functions
	Removal of Lookup Table Designer from the Lookup Table Editor
	Compatibility Considerations

	Version 7.2 (R2008b) Simulink Software
	Simulation Performance
	Parallel Simulations in Rapid Accelerator Mode
	Improved Rebuild Mechanism in Rapid Accelerator Mode
	Data Type Size Limit on Accelerated Simulation Removed
	New Initialization Behavior in Conditional, Action, and Iterator

	Component-Based Modeling
	Processor-in-the-Loop Mode in Model Block
	Conditionally Executed Subsystem Initial Conditions
	Model Block Input Enhancement
	One Parameter Controls Accelerator Mode Build Verbosity

	Embedded MATLAB Function Blocks
	Support for Fixed-Point Word Lengths Up to 128 Bits
	Enhanced Simulation and Code Generation Options for Embedded MAT
	Data Type Override Now Works Consistently on Outputs
	Improperly-Scaled Fixed-Point Relational Operators Now Match MAT

	Data Management
	Support for Enumerated Data Types
	Simulink Bus Editor Enhancements
	New Model Advisor Check for Proper Data Store Memory Usage

	Simulink File Management
	Model Dependencies Tools

	Block Enhancements
	Trigonometric Function Block
	Math Function Block
	Merge Block
	Discrete-Time Integrator Block
	Modifying a Link to a Library Block in a Callback Function Can C
	Random Number Block
	Signal Generator Block
	Sum Block
	Switch Block
	Uniform Random Number Block
	Subsystem Block
	Reshape BLock
	Multidimensional Signals in Simulink Blocks

	User Interface Enhancements
	Sample Time
	Model Advisor
	“What’s This?” Context-Sensitive Help for Commonly Used Blocks
	Compact Icon Option Displays More Blocks in Library Browser
	Signal Logging and Test Points Are Controlled Independently
	Signal Logging Consistently Retains Duplicate Signal Regions
	Simulink Configuration Parameters
	Model Help Menu Update
	Unified Simulation and Embeddable Code Generation Options
	Mapping of Target Object Properties to Parameters in the Configu
	What Happens When You Load an Older Model in R2008b
	What Happens When You Save an Older Model in R2008b

	New Parameters in the Configuration Parameters Dialog Box for Si

	S-Functions
	Ada S-Functions
	Legacy Code Tool Enhancement

	MATLAB Changes Affecting Simulink
	Changes to MATLAB Startup Options
	Handle Graphics Not Supported Under -nojvm Startup Option

	Version 7.1 (R2008a) Simulink Software
	Simulation Performance
	Rapid Accelerator
	Additional Zero Crossing Algorithm

	Component-Based Modeling
	Efficient Parent Model Rebuilds
	Scalar Root Inputs Passed Only by Reference
	Unlimited Referenced Models

	Embedded MATLAB Function Blocks
	Nontunable Structure Parameters
	Bidirectional Traceability
	Specify Scaling Explicitly for Fixed-Point Data

	Data Management
	Array Format Cannot Be Used to Export Multiple Matrix Signals
	Bus Editor Upgraded
	Changing Nontunable Values Does Not Affect the Current Simulatio
	Detection of Illegal Rate Transitions
	Explicit Scaling Required for Fixed-Point Data
	Fixed-Point Details Display Available
	More than 2GB of Simulation Data Can be Logged on 64-Bit Platfor
	Order of Simulink and MPT Parameter and Signal Fields Changed
	Range Checking for Complex Numbers
	Rate Transition Blocks Needed on Virtual Buses
	Sample Times for Virtual Blocks
	Signals Needing Resolution Are Graphically Indicated

	Simulink File Management
	Autosave
	Old Version Notification
	Model Dependencies Tools

	Block Enhancements
	New Discrete FIR Filter Block Replaces Weighted Moving Average B
	Rate Transition Block Enhancements
	Enhanced Lookup Table (n-D) Block
	New Accumulator Parameter on Sum Block

	User Interface Enhancements
	Simulink Library Browser
	Simulink Preferences Window
	Model Advisor
	Solver Controls

	“What’s This?” Context-Sensitive Help Available for Simulink Con
	S-Functions
	Simplified Level-2 M-File S-Function Template
	Compatibility Considerations

	Version 7.0 (R2007b) Simulink Software
	Simulation Performance
	Simulink Accelerator
	Simulink Profiler
	Compiler Optimization Level
	Variable-Step Discrete Solver
	Referenced Models Can Execute in Normal or Accelerator Mode
	Accelerator and Model Reference Targets Now Use Standard Interna

	Component-Based Modeling
	New Instance View Option for the Model Dependency Viewer
	Mask Editor Now Requires Java

	Embedded MATLAB Function Blocks
	Complex and Fixed-Point Parameters
	Support for Algorithms That Span Multiple M-Files
	Loading R2007b Embedded MATLAB Function Blocks in Earlier Versio

	Data Management
	New Diagnostic for Continuous Sample Time on Non-Floating-Point
	New Standardized User Interface for Specifying Data Types
	New Block Parameters for Specifying Minimum and Maximum Values
	New Range Checking of Block Parameters
	New Diagnostic for Checking Signal Ranges During Simulation

	Configuration Management
	Disabled Library Link Management
	Model Dependencies Tools

	Embedded Software Design
	Legacy Code Tool Enhancement

	Block Enhancements
	Product Block Reorders Inputs Internally
	Block Data Tips Now Work on All Platforms
	Enhanced Data Type Support for Blocks
	New Simulink Data Class Block Object Properties
	New Break Link Options for save_system Command
	Simulink Software Checks Data Type of the Initial Condition Sign

	Usability Enhancements
	Model Advisor
	Alignment Commands

	S-Functions
	New S-Function APIs to Support Singleton Dimension Handling
	New Level-2 M-File S-Function Example

	Version 6.6.1 (R2007a+) Simulink Software
	Version 6.6 (R2007a) Simulink Software
	Multidimensional Signals
	Multidimensional Signals in Simulink Blocks
	Multidimensional Signals in S-Functions
	Multidimensional Signals in Level-2 M-File S-Functions

	New Block Parameters
	GNU Compiler Upgrade
	Compatibility Considerations

	Changes to Concatenate Block
	Changes to Assignment Block
	Changes to Selector Block
	Improved Model Advisor Navigation and Display
	Change to Simulink.ModelAdvisor.getModelAdvisor Method
	Compatibility Considerations

	New Simulink Blocks
	Change to Level-2 M-File S-Function Block
	Model Dependency Analysis
	Model File Monitoring
	Legacy Code Tool Enhancements
	Compatibility Considerations

	Continuous State Names
	Changes to Embedded MATLAB Function Block
	New Function Checks M-Code for Compliance with Embedded MATLAB S
	Support for Multidimensional Arrays
	Support for Function Handles
	Enhanced Support for Frames
	New Embedded MATLAB Runtime Library Functions
	Using & and | Operators in Embedded MATLAB Function Blocks
	Calling get Function from Embedded MATLAB Function Blocks
	Documentation on Embedded MATLAB Subset has Moved

	Referenced Models Support Non-Zero Start Time
	New Functions Copy a Model to a Subsystem or Subsystem to Model
	New Functions Empty a Model or Subsystem
	Default for Signal Resolution Parameter Has Changed
	Compatibility Considerations

	Referencing Configuration Sets
	Compatibility Considerations

	New Block, Model Advisor Check, and Utility Function for Bus to
	Enhanced Support for Tunable Parameters in Expressions
	New Loss of Tunability Diagnostic
	Port Parameter Evaluation Has Changed
	Compatibility Considerations

	Data Type Objects Can Be Passed Via Mask Parameters
	Expanded Options for Displaying Subsystem Port Labels
	Model Explorer Customization Option Displays Properties of Selec
	Change to PaperPositionMode Parameter
	Compatibility Considerations

	New Simulink.Bus.objectToCell Function
	Simulink.Bus.save Function Enhanced To Allow Suppression of Bus
	Change in Version 6.5 (R2006b) Introduced Incompatibility
	Nonverbose Output During Code Generation

	Version 6.5 (R2006b) Simulink Software
	Model Dependency Viewer
	Enhanced Lookup Table Blocks
	Compatibility Considerations

	Legacy Code Tool
	Simulink Software Now Uses Internal MATLAB Functions for Math Op
	Enhanced Integer Support in Math Function Block
	Configuration Set Updates
	Command to Initiate Data Logging During Simulation
	Commands for Obtaining Model and Subsystem Checksums
	Sample Hit Time Adjusting Diagnostic
	Function-Call Models Can Now Run Without Being Referenced
	Signal Builder Supports Printing of Signal Groups
	Method for Comparing Simulink Data Objects
	Unified Font Preferences Dialog Box
	Limitation on Number of Referenced Models Eliminated for Single
	Parameter Objects Can Now Be Used to Specify Model Configuration
	Compatibility Considerations

	Parameter Pooling Is Now Always Enabled
	Compatibility Considerations

	Attempting to Reference a Symbol in an Uninitialized Mask Worksp
	Compatibility Considerations

	Changes to Integrator Block’s Level Reset Options
	Compatibility Considerations

	Embedded MATLAB Function Block Features and Changes
	Support for Structures
	Embedded MATLAB Editor Analyzes Code with M-Lint
	New Embedded MATLAB Runtime Library Functions
	New Requirement for Calling MATLAB Functions from Embedded MATLA
	Type and Size Mismatch of Values Returned from MATLAB Functions
	Embedded MATLAB Function Blocks Cannot Output Character Data

	Version 6.4.1 (R2006a+) Simulink Software
	Version 6.4 (R2006a) Simulink Software
	Signal Object Initialization
	Icon Shape Property for Logical Operator Block
	Data Type Property of Parameter Objects Now Settable
	Range-Checking for Parameter and Signal Object Values
	Compatibility Considerations

	Expanded Menu Customization
	Bringing the MATLAB Desktop Forward
	Converting Atomic Subsystems to Model References
	Concatenate Block
	Compatibility Considerations

	Model Advisor Changes
	Model Advisor Tasks Introduced
	Model Advisor API

	Built-in Block’s Initial Appearance Reflects Parameter Settings
	Compatibility Considerations

	Double-Click Model Block to Open Referenced Model
	Signal Logs Reflect Bus Hierarchy
	Tiled Printing
	Solver Diagnostic Controls
	Diagnostic Added for Multitasking Conditionally Executed Subsyst
	Embedded MATLAB Function Block Features and Changes
	Option to Disable Saturation on Integer Overflow
	Nontunable Option Allows Use of Parameters in Constant Expressio
	Enhanced Support for Fixed-Point Arithmetic
	Support for Integer Division
	New Embedded MATLAB Runtime Library Functions
	Setting FIMATH Cast Before Sum to False No Longer Supported in E
	Type Mismatch of Scalar Output Data in Embedded MATLAB Function
	Implicit Parameter Type Conversions No Longer Supported in Embed
	Fixed-Point Parameters Not Supported
	Embedded MATLAB Function Blocks Require C Compiler for Windows 6

	Version 6.3 (R14SP3) Simulink Software
	Model Referencing
	New Features and Changes

	Block Enhancements
	Variable Transport Delay, Variable Time Delay Blocks
	Additional Reset Trigger for Discrete-Time Integrator Block
	Input Port Latching Enhancements
	Improved Function-Call Inputs Warning Label

	Modeling Enhancements
	Annotations
	Custom Signal Viewers and Generators
	Model Explorer Search Option
	Using Signal Objects to Assign Signal Properties
	Bus Utility Functions
	Fixed-Point Support in Embedded MATLAB Function Blocks
	Embedded MATLAB Function Editor
	Input Trigger and Function-Call Output Support in Embedded MATLA
	Find Options Added to the Data Object Wizard

	Simulation Enhancements
	Viewing Logged Signal Data
	Importing Time-Series Data
	Using a Variable-Step Solver with Rate Transition Blocks
	Additional Diagnostics
	Data Integrity Diagnostics Pane Renamed, Reorganized
	Improved Sample-Time Independence Error Messages

	User Interface Enhancements
	Model Viewing
	Customizing the Simulink User Interface

	MEX-Files on Windows Systems
	Compatibility Considerations

	Fixed-Point Functions No Longer Supported for Use in Signal Obje
	Compatibility Considerations

	Parameter Object Expressions No Longer Supported in Dialog Boxes
	Compatibility Considerations

	MEX-File Extension Changed
	Compatibility Considerations

	Version 6.2 (R14SP2) Simulink Software
	Multiple Signals on Single Set of Axes
	Logging Signals to the MATLAB Workspace
	Legends that Identify Signal Traces
	Displaying Tic Labels
	Opening Parameters Dialog Box
	Rootlevel Input Ports
	Compatibility Considerations

	Version 6.1 (R14SP1) Simulink Software
	Changed Source Dialog Box Behavior
	Changed Model Explorer Source Behavior
	Affected Blocks
	Model Load Warnings
	Compatibility Considerations

	Version 6.0 (R14) Simulink Software
	Model Explorer
	Configuration Sets
	Configuration Parameters Dialog Box

	Model Referencing
	Model Workspaces
	Implicit Fixed-Step Solver
	The Signal and Scope Manager
	Data Object Type Enhancements
	Block Enhancements
	New Blocks
	Fixed-Point-Capable Blocks
	Port Values Display
	User-Specifiable Sample Times
	Improved Initial Output Handling
	Bus-Capable Nonvirtual Blocks
	Duplicate Input Ports
	Inport/Outport Block Display Options
	Zero- and One-Based Indexing
	Runtime Block API
	Command-Line API to Signal Builder Block

	Signal Enhancements
	Test Point Indicators
	Signal Logging
	Internal Signal Structures Revamped
	Edit-Time Signal Label Propagation
	Bus Editor

	Rate Transition Enhancements
	Rate Transition Block Determines Transition Type Automatically
	Automatic Insertion of Rate Transition Blocks
	User-Specifiable Output Sample Time

	Execution Context Enhancements
	Enabling Execution Context Propagation
	Execution Context Indicator

	Algebraic Loop Minimization
	Level-2 M-File S-Functions
	Panning Model Diagrams
	MATLAB Data Type Conversions
	Compatibility Considerations

	Signal Object Resolution Changes
	Compatibility Considerations

	Loading Models Containing Non-ASCII Characters
	Compatibility Considerations

	Change in Sample Time Behavior of Unary Minus Block
	Compatibility Considerations

	Initial Output of Conditionally Executed Subsystems
	Compatibility Considerations

	Execution Context Default Changes
	Compatibility Considerations

	Simulink Accelerator Switch Blocks Can Abort Code Generation

	Version 5.1 (R13SP1) Simulink Software
	Sample Time Parameters Exposed
	Enhanced Debugger
	Enhanced Debugger Commands
	New Debugger Commands
	Enhanced Debugger Toolbar
	Simulation Loop Pane
	Sorted List Pane

	Context-Sensitive Data Typing of Tunable Parameters
	Change in Simulink Behavior

	Conditional Execution Behavior
	Function-Call Subsystem Enhancements
	External Increment Option Added To For Iterator Block
	Performance Improvements

	Version 5.0.1 (R13.0.1) Simulink Software
	Tunable Parameters for Unified Fixed-Point Blocks
	Compatibility Considerations

	Version 5.0 (R13) Simulink Software
	Block Enhancements
	Fixed-Point Block Library
	Lookup Table Editor
	Model Verification Block Library
	Signal Builder Block
	DocBlock
	Rate Transition Block
	Block Library Reorganization
	Model Linearization Blocks
	Data Store Read/Write Block Navigation
	Enhanced S-Function Builder
	Miscellaneous Block Enhancements
	Block Data Type Table

	Simulation Enhancements
	Invalid Loop Highlighting
	Algebraic Loop Highlighting
	Conditional Execution Behavior
	Reorganized Simulation Diagnostics
	Enhanced Diagnostic Viewer

	Modeling Enhancements
	Enhanced Mask Editor
	Including Symbols and Greek Letters in Block Diagrams
	Production Hardware Characteristics
	True Color Support
	Print Details
	Boolean Logic Signals
	Model Discretizer

	Platform Limitations for HP and IBM

	Version 4.1 (R12+) Simulink Software
	Simulink Editor
	Undo Move
	Undo Subsystem Creation
	Autoconnecting Blocks
	Autorouting Signal Lines
	Displaying Storage Class on Lines
	Save Models in Release 11 Format

	Modeling Enhancements
	Autorouting Option Added to add_line Command
	S-Function Builder
	add_param, delete_param
	Connection Callbacks
	Saving Block User Data in Model Files
	Absolute Tolerance Enhancements
	Block Reduction Enhancements
	Boolean Logic Signals Preference
	Subsystem Semantics Demos
	Enhanced Engine Model Demos
	Setting Block Sorting Priority on Virtual Subsystems
	Using ~ in Filenames on UNIX
	Improved Warning About Slow Signals Feeding the Enable Port of a
	Flagging Function-Call Subsystem Cycles

	Simulink Debugger
	Enhancement to Sorted List Display
	Improved Messages in Accelerated Mode
	Breakpoints on a Function-Call Subsystem
	Displaying and Probing Virtual Blocks
	Stepping Stateflow Charts

	Block Library
	Unified Pulse Generator
	Control Flow Blocks
	Bus Creator
	Sine Wave Block Enhancements
	Enhanced Flip-Flop Blocks
	Additional Data Type Support
	Simulink Block Library Reorganization
	Scope Enhancements
	S-Functions Sorted Like Built-In Blocks

	Triggered Subsystems
	Added Latched Triggered Subsystems
	Self-Triggering Subsystems Are No Longer Allowed

	Running Simulink 4.1 Models in Simulink 4.0 Software
	Compatibility Considerations

	Direct Feedthrough Compensation Deprecated
	Compatibility Considerations

	Improved Invalid Model Configuration Diagnostics
	Compatibility Considerations

	Bug Fixes
	Variable sample time S-functions
	Bus selector detection of duplicated names
	Optimize block memory use
	Miscellaneous fixes to the model loader
	Profiler fixes
	Chirp block fix
	Function-call subsystem bug fixes
	Sorting bug fix
	Fixed handling of grounded/unconnected inputs feeding certain bl

	Version 4.0 (R12) Simulink Software
	Simulink Editor
	Preferences
	Text Alignment
	UNIX Context Menus
	Library Link Enhancements
	Find Dialog Box
	Model Browser
	Single Window Mode
	Keyboard Navigation
	Enhanced Library Browser
	Help Menus

	Modeling Enhancements
	Hierarchical Variable Scoping
	Matrix Signals
	Simulink Data Objects
	Block Execution Order

	Simulink Debugger
	GUI Debugger Interface

	Block Library
	Product Block
	Gain Block
	Math Function Block
	Reshape Block
	Multiplexing Matrix Signals
	Function Call Iteration Parameter
	Probing Signal Dimensionality
	Configurable Subsystem
	Look-Up Table Blocks
	Polynomial Block
	Signal Specification
	ADA S-Functions
	Bitwise Logical Operator Block
	Atomic Subsystems

	SB2SL
	SB2SL Extends Code Generation Support

	Port Name Property
	Compatibility Considerations

	Compatibility and Limitations Summary for Simulink Software

